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Abstract
We examined how the distribution of colors in natural images varies as the seasons change.
Images of natural outdoor scenes were acquired at locations in the Western Ghats, India,
during monsoon and winter seasons and in the Sierra Nevada, USA, from spring to fall. The
images were recorded with an RGB digital camera calibrated to yield estimates of the L, M,
and S cone excitations and chromatic and luminance contrasts at each pixel. These were
compared across time and location and were analyzed separately for regions of earth and sky.
Seasonal climate changes alter both the average color in scenes and how the colors are
distributed around the average. Arid periods are marked by a mean shift toward the þL pole
of the L vs. M chromatic axis and a rotation in the color distributions away from the S vs. LM
chromatic axis and toward an axis of bluish–yellowish variation, both primarily due to
changes in vegetation. The form of the change was similar at the two locations suggesting that
the color statistics of natural images undergo a characteristic pattern of temporal variation.
We consider the implications of these changes for models of both visual sensitivity and
color appearance.
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Introduction

Many aspects of color vision have been attributed to adaptations to the natural color

environment. For example, the spectral sensitivities of the receptors and of
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post-receptoral channels may be optimized for efficiently representing color

contrasts in natural scenes, and may also be optimized for specific visual tasks

such as finding ripe fruit among foliage or judging the complexion and health of

conspecifics (Polyak 1957; Mollon 1989; Osorio and Bossomaier 1992; Nagle and

Osorio 1993; Osorio and Vorobyev 1996; Ruderman et al. 1998; Dominy and Lucas

2001; Regan et al. 2001; Changizi et al. 2006; Fernandez and Morris 2007). Salient

features of color appearance may also reflect important characteristics of the

environment, though somewhat paradoxically, they are not predicted from visual

sensitivity, even though sensitivity itself is assumed to be matched to the

environment. For example, the colors that appear as perceptual nulls (such as

unique yellow which is the null for red vs. green sensations) do not represent the

null points of the opponent channels mediating color coding at early post-receptoral

levels of the visual system (Krauskopf et al. 1982), nor are they tied to individual

differences in spectral sensitivity (Schefrin and Werner 1990; Miyahara et al. 1998;

Brainard et al. 2000; Webster et al. 2000; Mizokami et al. 2006). This has suggested

that the unique hues appear special because they represent special features of the

environment. For example, unique blue and yellow lie very close to the axis along

which natural daylights vary and may thus reflect a perceptual representation of the

daylight locus (Lee 1990; Shepard 1992; Mollon 2006). Similarly, basic color terms,

which are the primary landmarks of how colors are named by a language, have yet to

find an account in terms of the known physiological processes in color coding, but

have been predicted by analyzing the distribution of colors or lightness levels in

images (Yendrikhovskij 2001; Attewell and Baddeley 2007), or the non-uniform

structure of surface reflectances (Philipona and O’Regan 2006) or perceptual color

space (Regier et al. 2007).

Given that the color characteristics of the environment may largely determine

color coding, it is of obvious interest to characterize the colors in the environment.

A number of studies have now measured the color statistics of natural images and

have related these to visual coding (Burton and Moorhead 1987; Webster and

Mollon 1997; Ruderman et al. 1998; Nascimento et al. 2002; Párraga et al. 2002;

Johnson et al. 2005; Lovell et al. 2005; Long et al. 2006). Many of these have

focused on the characteristic colors of scenes, by averaging the color distributions

across individual images. In this study, our aim was to instead examine the

variations in image color, by asking how color distributions change across scenes.

These variations have important implications for understanding how consistent the

environment may be in presenting specific color properties to the observer, and for

understanding the time course or specific contexts in which color coding might have

incorporated these properties. Variations in images are also important for

understanding the nature of short-term visual adaptations to color, since they

provide a measure of the stimulus range over which the visual system must operate,

and thus a measure of how different color coding might be in different contexts.

In a previous study, we explored variations in the color of natural outdoor

images and how observers are adapted to these by sampling the color statistics from

scenes collected in different environments (Webster and Mollon 1997). In the

present study, we focused on characterizing the variation in color within an

environment, by asking how color distributions change as the seasons change.

Seasonal changes in color are often perceptually dramatic because of changes in

climate and vegetation. These variations are of interest because they represent
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the range of colors a non-migrating species must face, and thus constrain how well

a static visual system could represent colors from its environment. They also reveal

the color cues that are available for judging the seasons or ‘‘state’’ of an

environment.

Methods

Seasonal changes were measured at two locations, in the United States and India.

These were chosen as part of a broader psychophysical project examining color

appearance in different environmental contexts (Webster et al. 2002a, 2002b), and

were collected over a period of several years from 2000 to 2005. The location in

India was in a rural agricultural area within the Sayadhri mountain range of the

Western Ghats in Nashik District, Maharashtra, a subtropical zone of montane

rainforest and grasslands that undergoes an extreme cycle of rainfall with the annual

monsoon. Images from this area included both close-range and panoramic views of

valley and hills with both natural vegetation and cultivated rice fields and had few

manmade objects. The images were acquired at two times: in September to early

October near the end of the wet (monsoon) season, and from December to January

during the dry (winter) season. The second set of images was acquired in the

Toiyabe and Tahoe National Forests in the Sierra Nevada mountains near Reno,

Nevada. These images included views of pine forests and meadows and again

avoided obvious manmade structures. The Eastern Sierras are an area of relatively

low annual precipitation (from <20 to <100 cm/year depending on elevation,

compared to >400 cm/year in the Nashik location) but high altitude, and receive

heavy snow accumulations at higher elevations during the winter. We sampled the

scenes from May to October, between the periods of snow cover during which the

measurement locations were not accessible. Examples of images from the two

environments are shown in Figure 1. As far as possible we attempted to measure

similar sets of views across the different times.

Images were acquired with an RGB digital camera (Sony DSC-D770), and thus

provided colorimetric measurements of the scenes rather than the actual spectra.

Spectral measurements based on multispectral imaging (Brelstaff et al. 1995;

Webster and Mollon 1997; Ruderman et al. 1998; Nascimento et al. 2002) have the

advantage that they provide more complete information about the underlying color

signals and are less prone to errors in estimating the cone responses from the

(different) spectral sensitivities of the camera sensors. However, colorimetric

measurements can provide reasonable approximations of the cone excitations for

naturalistic color signals and do not suffer from errors introduced by successively

sampling the scenes at different wavelengths over time, and have now been used by

a number of different groups for evaluating scene statistics and human color vision

(Burton and Moorhead 1987; Párraga et al. 2002; Doi et al. 2003; Johnson et al.

2005; Lovell et al. 2005; Long et al. 2006).

For our measurements each image included a reference palette of known

reflectance placed in the bottom right corner of the scene. For India we used the

MacBeth Color Checker, while the later Sierra scenes were instead recorded using

the MacBeth Color Checker DC, which includes a much more extensive palette of

206 distinct chips. Both palettes include a range of chips characteristic of natural
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colors with broad and smoothly varying spectra that are similar to the band-limited

reflectance spectra for natural objects (Maloney 1986). During image capture the

spectral power distribution reflected from the brightest white chip in the palette was

also recorded with a PR650 spectroradiometer in order to measure the scene

illuminant. This also allowed us to estimate the color signal for each chip in the

palette (i.e. by multiplying the illuminant spectrum by each chip’s reflectance

spectrum).

The images were calibrated in the following steps. RGB values were first adjusted

for the measured intensity response function of the sensors and then averaged over

2� 2 pixel blocks (giving an image of 672 by 512 pixels). For each chip we

calculated the L, M, and S cone excitation by weighting the chip color signal by the

Smith and Pokorny cone sensitivities (Smith and Pokorny 1975), and obtained

the corresponding RGB value by averaging over a block of pixels within the chip.

The LMS cone excitations for each pixel in the image could then be estimated by

interpolating the RGB values at each pixel between the known RGB values in

bounding sets of color checker chips. For this the program identified sets of four

reference chips that enclosed the pixel color with the smallest volume in RGB space.

The accuracy of the calibration was assessed by predicting the set of chips in the

Color Checker DC from the reference palette provided by the 24 chips in the

(a) (b)

(c) (d)

Figure 1. Examples of panoramic images from the Western Ghats and Sierras. The upper pair
shows a valley near Trimbukeshwar during the monsoon (a) or winter (b) season. The lower
pair shows images of Dog Valley in the spring (c) or fall (d).
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original Color Checker (in images that included both palettes). rmsError was

roughly 2% of the maximum response in the L and M cone responses and was

roughly 3% for the S cones. Figure 2 shows an example of the estimated luminance

and chromaticity of chips in the Color Checker DC based on the image calibrated

for the original Color Checker. Errors in chromaticity were generally larger for chips

with high saturation (colors which were rare in the measured scenes) and for the

darkest chips (i.e. low reflectance spectra at which chromaticity becomes poorly

defined).

The calibrated color coordinates were stored as bitmap images in which the cone

excitations at each point could be read out directly from the RGB values (with the

values normalized for the maximum luminance for each scene). The results

reported are based on an analysis of 664 images (113 in the Western Ghats and 551

in the Sierras). The data set is available on request from the authors.

Results

For each image, we examined the mean chromaticity in the scene and the principal

axes (color-luminance directions) along which colors in the scene varied. These

were used to compare differences in the color distributions across the seasons, the

contribution of earth and sky to these changes, and the contribution of illumination

vs. reflectance differences to the seasonal changes. Regions of earth or sky were

demarcated manually by drawing boundaries into the calibrated images. The color

statistics could then be estimated separately within these boundaries.

Figure 3 plots the aggregate probability distributions of color for the scenes

measured in India and in the Sierras (in Dog Valley). The plots show the frequency

of chromaticities within the MacLeod–Boynton (1979) color space. In this space,

variations in the b axis represent signals in the S cones at constant luminance, and
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Figure 2. Predicted responses to the palette of matte chips in the Color Checker DC in
an image calibrated based on the chips in the original Color Checker. Plots show the
measured vs. expected values for the chip’s luminance (left panel) and chromaticity in the
MacLeod–Boynton (1979) color space (L vs. M or ‘‘r’’ coordinate, middle panel; S vs. LM or
‘‘b’’ coordinate, right panel). Filled circles and unfilled triangles plot the predictions in the
calibrated and original uncalibrated images, respectively. Vertical lines with error bars show
the average estimated chromaticity for earth (solid lines) and sky (dashed lines) regions in the
images from India during the monsoon (unfilled diamonds) and winter (filled diamonds)
seasons.
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are given by S/(LþM), where S, L, and M are the cone responses at each individual

pixel and the pixel’s luminance is assumed to equal the sum of the L and M

responses. Variations along the r axis represent the opposing signals in the L and M

cones at constant luminance, and are given by L/(LþM) at each pixel. These two

axes have the advantage that they correspond to the two ‘‘cardinal axes’’ along

which color is processed at retinal and geniculate stages of the primate visual system

(Derrington et al. 1984). For reference, an equal energy white (illumant E) in the

MacLeod–Boynton (1979) space has r and b coordinates of 0.6656 and 0.01545,

respectively. The modal values for the distributions clearly peak at lower b values

indicating that the scenes were on average more greenish or yellowish. The left and

right panels in the figure show the distributions measured at the same location

during either wet or dry seasons. Two differences are evident from these plots. First,

the mean color shifts in the dry season toward higher r (þL/�M) values. Second, the

distributions become more tilted in the color space. Specifically, during the wet

season the colors tend to vary primarily along the b axis, while in the dry season

there is a negative correlation in the signals along the two axes. In the following

analyses we consider these color shifts in detail.

Figure 3. Probability density for color for scenes in India or the Sierras (Dog Valley)
during wet or arid seasons. Plots show the distribution of chromaticities within the
MacLeod–Boynton (1979) color space, and are based on averaging across individual scenes
from a single location and time period.
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Figure 4 plots the average chromaticity for the scenes, this time showing the

means for each individual scene within the sampled locations. The left panel

summarizes measurements from India, while the right three panels show the results

for three different locales in the Sierras. These are shown separately for clarity

because the Sierra regions were sampled more frequently over time and because the

three areas differed in elevation (from �5500 ft for Dog Valley up to 8000 ft for

Tahoe Meadows) and consequently had different temporal patterns for the color

changes. For example, measurements at Tahoe Meadows do not show the

monotonic shifts in average color that are seen in the Dog Valley and Boca

locations, since the earliest measurements (in June) were still under some

snow cover and thus a spring-like distribution did not emerge until the July

measurements. In the upper panels of Figure 4 the mean chromaticity is shown

separately for earth (large symbols) and sky (small symbols). In the lower panels the

averages for earth are replotted but this time they are compared to the mean

chromaticity for the illuminants (small symbols). Again, the scene illuminants were

acquired from spectroradiometric measurements of the brightest white chip on the

color checker. The chromaticities of the illuminants were more variable for the

scenes in India because they included both clear and overcast days. However, for

both locations the illuminant colors tend to lie within a ‘‘gap’’ separating the average

color of sky and earth.

Several notable features are evident from these plots. First, for both environments

the terrestrial regions of the images have a strong bias in average color, varying from

greenish to yellowish depending on the season. Thus, in general, the earth is not

gray (Brown 1994), and the achromatic point more closely corresponds to the

average chromaticity for sky and earth. Second, there are pronounced changes in the

average color with the seasons, and these show a different pattern for sky and earth.

Regions of sky in the scenes tended to cluster tightly along a blue–yellow axis close

to the blackbody locus. Compared to India, sky colors in the Nevada locations were

more strongly shifted toward blue and also showed more obvious seasonal shifts

presumably because of the higher northern latitude. For earth regions in both

locations, the seasonal color change is largely manifested as a shift along the r axis or

L vs. M chromatic dimension, with comparatively weak shifts along the S chromatic

dimension. In the extreme this drives the mean earth color toward the blackbody

locus so that it becomes continuous with the sky distribution. This shift, reflecting

changes in the chlorophyll content of the vegetation, represents the dominant source

of color changes in the images. That is, the long-term changes in environmental

color at each location are primarily due to changes in the reflectances of the surfaces

rather than to changes in the illuminants. Figure 4 also shows that the magnitude of

the color change is greater for scenes with a lower mean b (S cone) signal,

presumably because these scenes included a denser representation of vegetation.

Finally, while the seasonal color shifts were more pronounced for the scenes

measured in India, the pattern is qualitatively similar for the Sierras. That is, in both

these disparate environments there is a characteristic shift in color along the L vs. M

axis as the characteristic colors of the grasses and foliage changed.

Figure 5 directly compares the average chromaticity of the earth and sky regions

of scenes from India to the incident illumination (at least as measured by the

illumination incident on the reference chip). This again illustrates that changes in

illumination were not the primary source of the color changes across the seasons,
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and in particular, variations in the L vs. M component of the illuminant color were

small relative to the L vs. M shift in the mean color of the terrain between the two

seasons. Not surprisingly, though, the colors from scenes did depend on the

illuminant within each time period. Correlations between the mean earth and

illuminant r and b chromaticity were 0.61 (r) and 0.81 (s) for the images in winter

and 0.49 (r) and 0.37 (s) in the monsoon set. However, this again suggests that

a substantial source of the variation in average color across individual scenes is due

to the sets of surfaces in the scenes. (On the other hand, it should be noted that

images were acquired during midday and therefore did not reflect the full range of

daily variation in illuminant chromaticity.)

As we noted above, the color distributions in Figure 3 show not only a change in

average color but also in how the colors are distributed around the average within wet

or dry periods. To examine this, we measured the principal axes of the color

distributions for each scene, following an analysis similar to that described in Webster

and Mollon (1997). However, in the present case we excluded regions of sky from the

analysis, in order to focus on changes in the distribution of surface reflectances over

time. The cone responses were first normalized for the average color and luminance

of the scene, equivalent to von Kries scaling of the cone responses so that the

average response to each scene equaled the response to a reference chromaticity

of illuminant C. Next, contrasts relative to the mean along the three cardinal axes

(L vs. M, S vs. LM, and the achromatic axis) were scaled to roughly equate signals

along the three dimensions according to the following equations:

L vs: M ¼ 1955� ðr � 0:6568Þ

S vs: LM ¼ 5533� ðb� 0:01825Þ

Luminance ¼ 70� LUM

where 1955, 5533, and 70 are the scale factors for the three axes; 0.6568 and

0.01825 are the r and b coordinates of illuminant C; and LUM corresponds to the
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Figure 5. Mean chromaticity of scenes compared to the chromaticity of the illuminant, for
the scenes measured in India. Left panel shows the MacLeod–Boynton (1979) r coordinate
of the illuminant (x axis) and for the average of the regions of earth (black circles) or sky
(red triangles). Filled and unfilled symbols are for winter and monsoon images, respectively.
The right panel shows the corresponding comparisons for the S axis or b coordinate of the
MacLeod–Boynton space.
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luminance contrast relative to the mean luminance in the image [(I� Imean)/Imean].

This scaling is based on empirical measurements of sensitivity to contrasts along the

three axes and thus has the advantage of more nearly equating the perceptual

salience of signals along the axes (Webster and Mollon 1994). The rms contrasts for

individual scenes based on this scaling are compared for different pairs of cardinal

axes in Figure 6 for the scenes from India and Dog Valley. This shows that the

scaling factors we used give roughly comparable weight to contrasts along the three

dimensions, though they somewhat overestimate the ‘‘effective’’ variance along the

S vs. LM axis for the scenes in India. A similar result was found by Webster and

Mollon (1997). Finally, the distribution of contrasts within the scaled space was

analyzed to determine the color-luminance direction that accounted for the most

variance in the contrasts.

Figure 7 plots the principal axes for each location at each measurement time.

In these plots the x axis gives the chromatic angle within the plane defined by the

scaled L vs. M axis (0–180�) and the S vs. LM axis (90–270�). The y axis gives

the color-luminance angle or elevation out of the chromatic plane (0�) and toward

the achromatic axis (�90 to þ90�). Large symbols plot the first principal axis for

each scene while the small symbols plot the second orthogonal axis. The third axis

(not shown) is constrained to be orthogonal to the first two and typically had an

elevation near 0�, suggesting that the distributions are, to a first approximation,

characterized by planes perpendicular to the isoluminant plane (Webster and

Mollon 1997). The chromatic axes of the distributions span a limited range, from
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Figure 6. Chromatic and luminance contrasts in individual scenes measured during wet
(black symbols) or arid (red symbols) seasons. Plots compare the distribution of rms contrasts
within earth regions along the L vs. M or S vs. LM chromatic axes (left), or each chromatic
axis relative to the luminance contrast in the images (middle and right). The upper panels
were for scenes in India while the lower panels were for the scenes in Dog Valley.
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roughly �90� (the S vs. LM axis) to angles of roughly �45�, a blue–yellow axis

intermediate to the S vs. LM and L vs. M cone-opponent axes. While the nominal

angles of the axes depend on the metric for defining the color space, it is notable that

(within any space) the range of the angles is bounded by two theoretically important

and readily distinguishable axes: the cardinal S axis of early color coding and the

unique blue–yellow axis of color appearance.

This pattern is very similar to the results reported by Webster and Mollon (1997)

for the set of scenes they sampled. However, the present results more clearly reveal

the basis for these color changes. First, it is evident from the figures that at

each location the dominant chromatic axis shifts systematically with the season.

During wet periods of more lush vegetation the color variation is primarily along the

S vs. LM axis, but shifts progressively toward the blue–yellow axis over time.

Second, the present analysis shows that the changes in the color distributions are

a characteristic of the terrestrial environment itself and not how the mean color of

the earth changes relative to sky. That is, a shift from green to yellow in the foliage

might itself introduce a correlation between the cone-opponent axes owing to an

average change in the scene colors compared to the more static colors of the sky.

However, the change in the principal axes is similarly pronounced when the sky is

excluded. This is likely to occur because the foliage color is shifting relative to more

static and neutral reflectances such as for soils and bark (Hendley and Hecht 1949;

Osorio and Bossomaier 1992).

Figure 8 illustrates the variations within the distributions a second way, by

showing the correlations between the signals along the L vs. M, S vs. LM, and

luminance axes. These are again restricted to measurements based on the terrestrial

regions in the images. The correlations vary widely among individual scenes, but

nevertheless again show a characteristic pattern for each location. During drier

periods there is a strong negative correlation between the L vs. M and S vs. LM

chromatic signals, averaging �0.44 in India during the winter season and �0.60

in the Sierras in the final fall measurements. This is consistent with the pronounced

blue–yellow bias in the scenes. The correlations are reduced during the wet seasons,

but are still present (averaging �0.27 for India and �0.28 for the Sierras). Thus,

for either location there is no period at which the cardinal chromatic axes capture

fully independent information about color in the scenes. In contrast, the

correlations between either chromatic axis and luminance is on average much

weaker (but still substantial within some individual scenes) and shows less shift

with the climate change.

The preceding analyses show that there are large and consistent shifts in the color

statistics within scenes. It is interesting to ask to what extent this allows color cues to

be diagnostic of the environment. To examine this, we compared the probability

distributions across the seasons. These are shown in Figure 9, which plots the

probability that a particular chromaticity came from a particular time period either

for scenes in India (shown for monsoon vs. winter) or scenes in Dog Valley (for early

spring vs. late fall). The distributions include both earth and sky. For both locations

there are, again, clear swings in the colors, primarily along the L vs. M axis at low S

values. Not surprisingly, this is again the change from green to yellow in the

vegetation, but the point is that this provides a reliable cue to the season in both

environments. Figure 10 pools these distributions to now compare the changes

in season across both locations (lower panels) or a change in location across
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both seasons (upper panels). This comparison shows that the color shifts are more

substantial over time than over space (for the specific locations we measured). Thus,

the changes in color within the same environment over time are the principal source

of variation in the color statistics of the scenes.

Discussion

The distribution of colors within natural scenes spans only a limited range of the full

gamut of possible colors, yet within this range seasonal changes are nevertheless

perceptually salient. Hering (in press) has recently characterized these appearance

changes by visually matching the colors in outdoor landscapes in Germany.

In the present study we documented these by colorimetrically sampling the

distribution of colors within the same environments at different times. Our principal

finding – that there are changes over time in both the mean color of scenes and how

0.65 0.66 0.67 0.68 0.69 0.70
scene redness (r)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

co
rr

el
at

io
n 

co
ef

fic
ie

nt

0.65 0.66 0.67 0.68 0.69 0.70
scene redness (r)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

co
rr

el
at

io
n 

co
ef

fic
ie

nt

0.65 0.66 0.67 0.68 0.69 0.70
scene redness (r)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

co
rr

el
at

io
n 

co
ef

fic
ie

nt

0.65 0.66 0.67 0.68 0.69 0.70
scene redness (r)

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 8. Correlations between the color signals along different pairs of cardinal axes: L vs. M
and S vs. LM (black symbols); L vs. M and luminance (red); and S vs. LM and luminance
(green). Each point plots the coefficient for a single scene as a function of the mean L vs. M
value (r-value in the MacLeod–Boynton space) in the scene. Circles and triangles denote
images acquired in wet or dry seasons, respectively. The left panel is for scenes in India while
the remaining panels are for the three locations in the Sierras.
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colors within scenes vary around the mean – is at first glance trivially obvious.

It is not surprising that the world is greener in the spring or wet seasons and

becomes yellow in the fall or dry seasons. However, we illustrate below that the

specific pattern of these color changes have a number of important implications for

how color coding might be matched to color in the environment.

Before considering these, it is worth noting some of the limitations of the current

study. First, we sampled only two environments and these may not be sufficiently

representative of the color statistics of other ecosystems nor of the specific color

context in which primate color vision evolved or color-naming patterns in humans

emerged. In particular, we examined environments with large climatic changes for

which temporal variations in color are pronounced. Second, within these

environments our sampling of seasonal changes and in particular the time course

of these changes is incomplete. Finally, the images we acquired at a particular time

did not completely sample the color characteristics of the settings. For example,

most images were taken with the camera directed away from the sun. When facing

the sun the colors are often conspicuously different in part because of the

translucence of backlit foliage.

Figure 9. Comparisons of the aggregate color distributions for images measured in different
seasons. Pairs of panels show the probability that a given chromaticity came from a scene in
the wet (left) or dry (right) season. The top panels are for the images in India during while the
bottom panels are for the images in Dog Valley.
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Despite these limits, the similar patterns of color we observed for markedly

different environments suggest some general conclusions. A number of studies have

addressed whether visual coding is optimized to efficiently represent the variations

in color in the natural environment (Webster and Mollon 1997; Ruderman et al.

1998; Párraga et al. 2002; MacLeod and von der Twer 2003; Lovell et al. 2005).

As noted, early post-receptoral mechanisms are tuned to the chromatic signals given

by the L vs. M and S vs. LM opponent axes. These mechanisms would thus

optimally code color distributions that vary independently along these two axes.

This ideal is approached for scenes dominated by lush vegetation and that include

little sky (Webster and Mollon 1997; Ruderman et al. 1998; Johnson et al. 2005),

which tend to show principal axes aligned roughly along the S vs. LM axis.

However, for the majority of the scenes we sampled there were significantly negative

correlations between the two chromatic axes (Figure 6). These persisted when

regions of sky were excluded, and though weaker, also persisted in wet seasons.

This negative correlation amounts to a ‘‘blue–yellow’’ bias in natural scenes and has

been observed in most previous studies that have sampled very different outdoor

Figure 10. Comparisons of the aggregate color distributions for images measured in different
seasons or at different locations. In the upper plots, the probability that a chromaticity came
from India (top left) or Dog Valley (top right) is compared after pooling over both seasons.
In the lower plots, the probability that a chromaticity came from a wet (left) or dry (right)
season is compared after pooling over both locations.
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environments (Burton and Moorhead 1987; Webster and Mollon 1997; Ruderman

et al. 1998; MacLeod and von der Twer 2003), suggesting that it is a prominent and

general chromatic feature of natural images. This raises the question of to what

extent, or for which specific context, color coding along the geniculate axes was

driven by the general constraint of coding efficiency.

One problem in interpreting the color variations in images is that there is no

obvious metric for equating the signals along different dimensions of color space

(Brainard 1996). Cone contrasts are necessarily larger for luminance variations than

for color and larger for the S vs. LM chromatic axis than the L vs. M axis because of

the overlap of the cone sensitivities. Thus a metric like cone contrast predicts that

the world varies primarily in luminance and that chromatic contrasts fall primarily

along the S axis. However, another prediction of coding efficiency is that the

dynamic range of mechanisms should be matched to the range of stimulus levels

(Laughlin 1987; MacLeod and von der Twer 2003; Long et al. 2006). This suggests

that contrasts should instead be scaled to equate visual sensitivity or perceptual

salience for the different dimensions. This is a common approach in psychophysical

studies that attempt to compare performance along different color directions

(Switkes and Crognale 1999), and is the approach we used to measure the principal

axes (Figures 6 and 7). Perceptually scaling the axes is itself problematic because it

depends on the specific task and stimulus used to measure sensitivity (and in our

case was based on equating the magnitude of contrast adaptation for different axes

for low spatial and temporal frequencies; Webster and Mollon 1994). However, it is

notable that the range of contrasts in the scenes we sampled are roughly comparable

by this measure, and thus in this sense visual responses are roughly matched to the

range of variation in scenes.

Unlike the chromatic contrasts, the correlations between luminance and color

were on average much weaker, though they again varied widely and were therefore

strong for some individual scenes. Thus in this case mechanisms that respond to

luminance or chromatic contrast may come closer to providing an efficient

representation of the ensemble color statistics of natural images. Golz and MacLeod

(2002) showed that correlations between luminance and color should often occur

for natural images and that these afford a potential cue for disambiguating the

average color of the scene reflectances from the average color of the illuminant.

Specifically, they demonstrated that scenes with surfaces that have a red bias would

tend to have a more negative correlation between redness and luminance under a

given illuminant. Surprisingly, these correlations were not evident in the population

statistics for our images. Changes in the seasons produced a large change in the

mean redness of the scenes, yet this did not clearly alter the overall relationship

between L vs. M contrast and luminance contrast in the images (Figure 8).

An alternative to modeling the global efficiency of visual coding has been to relate

visual mechanisms to the performance on specific visual tasks. For example,

trichromacy is unique among mammals to primates, who share with other mammals

an ‘‘ancient’’ dichromatic subsystem based on comparing S cones vs. longer wave

cones, but in addition evolved a ‘‘modern’’ subsystem based on comparisons

between separate L and M cones (Mollon 1989). A number of studies have explored

the natural color signals that might be detected by the L vs. M chromatic contrasts.

In particular, this dimension is nearly optimal for discriminating ripening fruit

(Osorio and Vorobyev 1996; Regan et al. 2001; see also Sumner and Mollon 2000)
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or edible leaves (Dominy and Lucas 2001; Troscianko et al. 2003) against the

background of foliage, and is also the chromatic dimension that captures variations

in complexion and thus the health and emotional states of conspecifics (Mollon

1989; Changizi et al. 2006; Fernandez and Morris 2007). These observations place

special emphasis on detecting reddish targets or signals along the þL pole of the

opponent axis. In the present study, we found that this dimension also characterizes

the primary change in the average chromaticity of scenes as the climate changes

and leaves build up or lose their chlorophyll. Thus another potential advantage

of the L vs. M signals is that they provide a measure of the general lushness of the

environment, and this ‘‘target’’ is carried by the �L or greenish pole of the axis.

Interestingly, in a recent study in Kibale Forest, Uganda, Troscianko et al. (2003)

noted that green leaves form a substantial part of the diet of foraging primates

during the dry season (Troscianko et al. 2003).

Whatever their merit, speculations about the match between color coding and the

color environment must be tempered by the fact that the environment itself is often

cycling through changes in color. What are the implications of these stimulus

variations for variations in color perception? A first point to note is that while the

color changes we observed are large, they nevertheless span a limited range within

the volume of color space. As Webster and Mollon (1997) reported, the color

distributions appear bounded by the S vs. LM axis for lush environments or seasons

and by the perceptual blue–yellow axis for arid contexts. This represents a range of

�45� out of a possible span of 180� within our scaled space. Moreover, we found

that this pattern is very similar within the two environments we sampled, or in other

words, that much of the color variation is intrinsic to how a given environment

changes over time (Figure 10). This suggests that the color variations themselves

have a restricted and characteristic pattern that may be typical of much of the natural

world. Though the magnitude of this variation will obviously vary with the

ecosystem, it is possible that these characteristic stimulus patterns contribute to

characteristics properties of human color perception. For example, a striking feature

of color naming is that the color spectrum is parsed in similar ways by the world’s

languages (Berlin and Kay 1969; Kay and Regier 2003). Thus most languages have

a basic color term that glosses to the English ‘‘red’’ in that it denotes a very similar

focal stimulus. The bases for the privileged status of basic color terms and unique

hues have typically focused on the common physiology of color processing in the

human visual system (Kaiser and Boynton 1996). However, as we noted in the

introduction, it has not yet proven possible to identify neural mechanisms that

would predict why some chromatic stimuli are more basic or perceptually special,

suggesting that color categories may instead be tied to properties of the color

environment. Specifically, to the extent that prominent features of the color statistics

of the natural world are characteristic and vary in characteristic ways within different

environments, universals in color naming may reflect universals in the color

environment.

As we also noted in the introduction, one candidate environmental universal

is the daylight locus, which is in close correspondence to the perceptual unique

blue–yellow axis (Lee 1990; Shepard 1992; Mollon 2006). It is interesting that the

color distributions in arid scenes also fall close to this axis and that it roughly defines

the limit of the color changes in foliage. Thus, objects as well as illuminants in the

environment might have played a role in shaping the blue–yellow dimension of color
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appearance. However, this leaves as a puzzle the reason why colors along the S vs.

LM axis, which vary from purple to yellow–green and also define a boundary for

natural color distributions, do not appear similarly special.

If regularities in the color environment underlie consistencies in color perception,

then variations in the color statistics should instead lead to differences in

appearance. There are in fact large individual differences in the stimuli observers

select for unique hues (Webster et al. 2000; Kuehni 2004), and again these cannot

be tied to individual differences in spectral sensitivity. There are also significant

differences in focal color settings between populations in different environments.

For example, we have shown that observers in India, tested within regions including

the locations where images for the current study were collected, differ quantitatively

in their unique hue and focal color settings from a population of students in the

Reno area (Webster et al. 2002b). Moreover, Webster and Kay (in press) have

recently analyzed the focal color settings for the 110 languages of the World Color

Survey and showed that the mean foci varied more across linguistic groups than

would be predicted by the within-language variability in color naming. Thus, while

languages may share a set of common color terms the exact focal stimuli for these

terms can vary. One way this could arise is if individuals are adapted to the specific

color distributions defining their environment. Adaptation adjusts to both the

average color through chromatic adaptation and to the variance in color through

contrast adaptation. This could in principle lead to selective biases in color

appearance for observers exposed to environments that have a bias in their color

distributions (e.g. with greater variance along the S vs. LM or blue–yellow axis)

(Webster and Mollon 1997). However, it remains unknown to what extent the

differences in color naming across different populations reflect environmental

vs. cultural differences.

The large, slow drifts in color with the seasons have important implications for

visual adaptation and how this might calibrate color appearance. Most studies of

adaptation have focused on very short-term exposures to changes in the stimulus,

but adaptation may also act on long-time scales to adjust to changes in the observer

or the environment. For example, the density of lens pigment increases with age

leading to progressive losses in sensitivity to short wavelength light. Adaptation may

be important to discount this sensitivity change so that color appearance remains

stable (Werner and Schefrin 1993). Delahunt et al. (2004) examined these

processes by measuring changes in achromatic settings after cataract surgery.

Removing the cataractous lens effectively floods the retina with shortwave light.

Immediately after surgery this causes the world to appear blue, yet the white settings

slowly renormalize over a period of many weeks to return toward the patient’s

original neutral point. Long-term drifts in unique yellow have also been found

following long-term exposure to biased color environments (Neitz et al. 2002). Note

that these long-term changes reflect a shift in the underlying, ‘‘intrinsic’’ sensitivity

of the visual system and are distinct from the rapid adjustments that occur in

response to the currently viewed stimulus. The specific time course of these long-

term adjustments is not well-characterized, nor is it known whether similar long-

term effects occur for other properties of the distributions such as contrast. If they

are rapid enough to track the mean changes in chromaticity across the seasons then

achromatic settings should cycle with the seasons. Alternatively, it may be that the

intrinsic changes in sensitivity that are reflected in studies of long-term adaptation
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are intentionally sluggish enough to integrate over the cyclical changes in the

environment. We are currently exploring these alternatives.

The recalibration of achromatic settings with aging suggests that white is set by

a consistent feature of the environment, yet it is not clear what this feature is or how

visual coding adjusts in response to it. One candidate is adaptation to the average

spectral stimulus the observer is exposed to. By this account, terrestrial regions in

most images are too yellow or green to determine the achromatic point, which

instead falls at a chromaticity intermediate to earth and sky. This suggests that the

sky, which is often considered an inconsequential property of color in images,

actually plays a significant role in calibrating color vision (MacLeod and von der

Twer 2003). The processes underlying the white point must act locally, since they

compensate for the spatial inhomogeneities of the retina, for example, correcting the

differences in spectral sensitivity owing macular pigment (Beer et al. 2005;

Stringham and Hammond 2007). This could arise if each retinal region is locally

adapted to the same external stimulus. Recently we found that the chromaticity that

appears white to an observer is the same stimulus that maintains an unbiased state in

chromatic adaptation (Webster et al. 2007). This implies that the perceptual norm

or neutral point for color does in fact reflect a response norm or neutral point in

chromatic mechanisms (at the sites at which chromatic adaptation affects the visual

response). A local sensitivity regulation of this kind can discount differences in

spectral sensitivity by normalizing color coding for the same environmental

stimulus, but should lead to differences in color appearance if different parts

of the retina are exposed to different average colors. In particular, the upper and

lower retina are more often exposed to earth or sky, and white settings might

therefore be expected to vary in predictable ways across the visual field.

Measurements of such effects might help to establish how color perception is

controlled by the statistics of the color environment.
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