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An important goal in characterizing human color vision is to order color percepts in a way that captures their
similarities and differences. This has resulted in the continuing evolution of “uniform color spaces,” in which the
distances within the space represent the perceptual differences between the stimuli. While these metrics are now
very successful in predicting how color percepts are scaled, they do so in largely empirical, ad hoc ways, with
limited reference to actual mechanisms of color vision. In this article our aim is to instead begin with general and
plausible assumptions about color coding, and then develop a model of color appearance that explicitly incor-
porates them. We show that many of the features of empirically defined color order systems (those of Munsell,
Pantone, NCS, and others) as well as many of the basic phenomena of color perception, emerge naturally from
fairly simple principles of color information encoding in the visual system and how it can be optimized for the
spectral characteristics of the environment. © 2016 Optical Society of America
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1. INTRODUCTION

The field of color vision encompasses a diverse range of ques-
tions and has spawned a number of subdisciplines. One in-
volves colorimetry—“the branch of color science concerned…
with specifying numerically the color of a physically defined
visual stimulus” [1] in terms of color matches (basic colorimetry)
and color appearance correlates (advanced colorimetry). The lat-
ter has involved developing a number of formal algorithms for
specifying the basic structure of color appearance. Such algo-
rithms have obvious practical value for gauging the perceptual
consequences of colors in different conditions or applications,
e.g., when images are rendered on different devices. However,
they have largely been designed only by describing empirical
measurements of color discrimination or similarity ratings,
and not by asking what causes color appearances to be as they
are. That is, while the values are useful from an engineering
perspective, they are based on a nested series of multiparameter
functions, for which the parameters have been adjusted to make
the overall calculation fit known data, but wherein a number of
the mathematical subfeatures lack a clear rationale or plausible
neural mechanisms.

A second line of color research has focused on understand-
ing the actual mechanisms of color coding. This has provided

deep insights into how information about the spectral charac-
teristics of light is represented and transformed along the
visual pathway, and the neural substrate of these mechanisms.
This approach has also helped to elucidate computational
principles that likely guided the evolutionary development
of color vision. However, these approaches have generally
not aimed to generate formal quantitative predictions for color
metrics.

In the present work, our aim is to bridge the conceptual gap
between these two important goals in color science—one fo-
cused on understanding the mechanisms and design principles
underlying the neural encoding of color information, and the
other focused on developing systems for quantifying and pre-
dicting the structure and characteristics of color appearance.
Specifically, our aim is to illustrate how a quantitative model
of color appearance—with predictive power approaching typ-
ical uniform color metrics—can be derived from reasonable and
general assumptions about color coding, rather than purely
empirical data fitting. Our model is thus in contrast to the
many color metrics for which predictive performance is often
the main goal at the cost of clarity and transparency of possible
underlying explanatory physiological, neural, or cognitive
mechanisms related to human color perception.
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With these thoughts in mind, we begin by discussing the
specific behavior we hope to explain—the perceptual organiza-
tion of surface colors (specifically, colors as perceived within a
uniform flat neutral background or context, as opposed to iso-
lated or “aperture” colors). These are usually described by three
perceptual attributes: hue (e.g., red versus green), chroma (pure
versus diluted), and lightness (light versus dark). The fact that
this representation has three key attributes follows plausibly
(though not necessarily) from the fact that, as the color normal
human eye scans the visible environment, light is sensed by three
different types of cone photoreceptors in the retina. It is also
widely assumed that these subjective attributes of color arise from
combining cone signals by subtraction (opponency) or addition
(non-opponency). This two-stage model (of an initial represen-
tation based on the three cone types, followed by combining the
cones signals within color-opponent mechanisms) explains, in
general terms, both the basic color matching characteristics of
color vision and also the basic phenomena of color appearance.

However, at a finer level, the characteristics of color appear-
ance remain complex. A wide variety of techniques and studies
have been used to describe the relationships involved. Often
these approaches arrange surface colors in terms of their per-
ceived similarities and differences. Thus two shades of blue fall
closer together than a blue and yellow. Ideally, such systems
provide what subjects perceive to be an approximately “uniform
color space,” in which the distances between any two points
represent approximately equivalent perceptual differences.
Here we will focus on the Munsell Color System [2] which,
while not the most accurate, is possibly the most well-known
perceptual color ordering system, with other examples being
the line element models of Helmholtz and Schrödinger [3]
and numerous improvements over the years, leading to what
many feel is the most accurate prediction tool today, the
CIECAM02 system [4,5] of the International Commission
on Illumination (CIE).

The Munsell Color System [6] was developed through care-
ful studies of classification of colored surfaces carried out by
Albert H. Munsell in the early part of the 20th century, based
on the reported observations of numerous human subjects.
This system organizes color samples into a three-dimensional
configuration, as depicted [7] in Fig. 1.

The system is organized into levels of equal perceived light-
ness (the vertical, axial direction), quantified by a number called

value (V ) notionally ranging from V � 0 (black) to V � 10
(white). It is also organized into planar groupings of equal hue,
in which radial distance from the center represents increasing
intensity of color, represented by a number called chroma (C),
which ranges from zero (gray) to a maximum value that de-
pends on the hue (H ) and value. The planes of equal hue
are organized in equal perceived spacing in the circumferential
direction, and can be defined by a labeling scheme or simply
the angle, to identify a specific hue. As with many other color
appearance systems, the Munsell chart was organized to have
the distance between two samples correspond on average to
subjects’ perception of the “size” of the appearance difference
between them. Finally, note that the appearance of the samples
depends critically on the background, and is normally relative
to a neutral gray, which is the context we assume here.

People with normal color vision find such classification sys-
tems intuitively clear and meaningful and therefore may not
realize they present a fascinating and important characteristic
of human color vision—the fact that the arrangement appears
sensible and appropriate for essentially everyone with normal
color vision. But, what actually are hue, value, and chroma?
More generally, what is the connection between the H , V ,
C coordinates of the Munsell system and the photoreceptor
responses that can be calculated from the spectral power distri-
butions (SPDs) of the reflected light that reaches the eye from
each of the various surfaces in a scene (recognizing that these
reflected light SPDs are the products of the incident illumina-
tion SPD and the spectral reflectance functions of the various
surfaces)? One might have expected the answer to this question
to be simple, but it is not! Actually, understanding this connec-
tion has been a goal of modern color metrics for some time, one
that has previously been achieved through empirical approaches
[4,8,9] that are significantly more complex than the method
described here, and are much less clearly connected to the
underlying physiology of color vision.

The challenge of this problem of connecting the H , V , C
values to cone stimulations [10] is partially illustrated in Fig. 2.
The figure’s rightmost panel shows a set of stimuli within the
Munsell system, chosen to have equal chroma and lightness and
spanning the circle of hues in equal intervals. As mentioned
previously, this is a system in which the color differences por-
trayed are perceived by observers to be approximately percep-
tually uniform. However, the figure’s middle panel shows these
stimuli plotted instead in terms of their corresponding cone
photon absorption rates, using a variant of a standard diagram
that plots the relative excitations of the cones to different spec-
tra of the same luminance [11]. In terms of the cone absorption
rates, the previously uniform set of stimuli is now strongly
distorted—stretched along some axes and compressed along
others. Moreover, the distortion pattern itself depends, in a
complicated way, upon the SPD of the background. The chal-
lenge, then, is to identify the transformations that convert the
cone photon absorption rates into perceptually meaningful
(uniform) differences. As we have noted, in developing uniform
color spaces, these connections have been predominantly em-
pirical and rather complex. Thus, while they successfully
describe color appearance, they provide little insight into the
underlying processes or evolutionary factors driving the visualFig. 1. Munsell Color System.
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representation of color, because there is little correspondence
between the mathematical operations and the actual physiol-
ogy, nor is there any explanation for how those calculations
could be accurately emulated in the nervous system.

As a specific example, consider one of the most sophisticated
instantiations of the family of CIE uniform spaces:
CIECAM02 [12], which estimates the color differences with
a basic set of 14 equation groups involving 39 constant numeri-
cal parameters. As with most other models, these include non-
linear calculations resulting from the need to “compress”
responses or “adapt” them according to the reference back-
ground, but without considering the actual basis or rationale
for these adjustments. Moreover, many of the calculations in
CIECAM02 involve complex polynomial expressions without
any explanation for how such relationships could be emulated
physiologically. Further, the many constant numerical param-
eters were selected to produce a reasonable match to observa-
tional data, but without any explanation for how such “tuning”
might actually occur within the vision system. Thus, while
CIECAM02 and its predecessors are very useful engineering
tools, they provide little insight into color appearance (in the
same way that the CIE 1931 chromaticity diagram provides
an industry standard for color specification yet completely ob-
scures the underlying basis of color matching and trichromacy).

Here, we show that a more explanatory description of color
appearance is afforded by starting with some simple assump-
tions about sensory coding. Again, this is an area that also
has an extensive, though more recent, history. A general prin-
ciple emerging from this approach is that it would have been
evolutionarily advantageous for sensory systems to evolve so as
to optimize the efficiency of representation of the characteristics
of an organism’s environment. Much of this work has drawn
from information theory and arguments for coding efficiency,
to identify how the limited dynamic range of neural responses
should be allocated to carry the most information about the
stimulus [13–16]. This includes adjusting individual neuron
response functions based upon the frequency distribution of
past stimulation values in order to equalize the information con-
tent associated with each response level [17,18], and adjusting
the responses across neurons so that they are similar but inde-
pendent (which maximizes the amount of useful information

carried by each neuron) [19,20]. Resource limitations may be
an especially critical factor at early stages of the visual system,
where the raw image must be compressed into a small number
of channels, each restricted to a limited range of levels. As one
example, the optic nerve consists of between 770,000 and
1,700,000 nerve fibers [21], transmitting somewhat less than
10,000,000 bits of information per second [22], but this must
be used to carry the information arising from over 100,000,000
photoreceptors [23]. Clearly, then, this encoding must be opti-
mized to preserve information about the image [24].

Coding efficiency also requires that the system be optimized
for the specific characteristics of the stimulus environment, and
be adaptable to changes in the environment [25]. The left panel
of Fig. 2 shows the distribution of cone excitations from a sample
of a natural outdoor setting [10]. Note that this environmental
distribution is somewhat similar to the cone excitations of the
Munsell samples, which appear perceptually uniform. This sug-
gests that part of the mapping of the cones to color sensations is
very much a mapping from the world, and indeed one could
directly try to predict perceptually uniform color spaces from
the non-uniform color statistics of natural images [10,26].

However, our goal is to illustrate how this mapping could be
realized by feasible steps in color coding. For this reason,we focus
on plausible simple sequential computations for implementing
the transformation. We attempt to explain how each step can
feasibly adjust its performance parameters in response to the stat-
istical distribution of recent signals from the preceding stage.
Admittedly, many of the neural processes underlying color per-
ception remain poorly understood, andmany of the mathemati-
cal transformations we present do not have uniquely defined
neural correlates or might be instantiated in very different ways.
Thus ourmodel is not intended to imply the actual physiological
basis for color metrics. Instead, the primary focus of the paper is
to demonstrate what steps we might expect from fairly simple
and general principles, and how close those steps come to em-
ulating the content of empirically defined color metrics.

2. KEY COMPONENTS OF THE MODEL

With this background, we will begin with a brief overview of
a model consisting of five sequential functional stages. Each

Fig. 2. Relative cone excitations for a set of natural outdoor scenes (left) and a set of uniformMunsell samples (middle), as shown by their Munsell
coordinates (right).
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stage receives input information and produces a transforma-
tion that is input to the next stage. The input for stage
one is light entering the eye. The output for stage five is
the perception of surface color. Within each stage there is
a simple, mathematically describable, transform function that
contains one or more numerical parameters that “tune” its per-
formance, and—where possible—we point to the potential
mechanisms or principles underlying why this transformation
may have evolved and how the parameters may be automati-
cally adjusted over time. One type of “plausible tuning algo-
rithm” would be to slowly adjust a parameter over time to
achieve and maintain a uniform statistical distribution of re-
cent output values.

Figure 3 depicts these stages as a flow chart. (We emphasize
that these stages are not exhaustive and, for example, do not
include many known contextual effects or how color interacts
with other attributes such as form or motion. However they
are intended to characterize the properties of color appearance
as embodied by most color metrics.) Importantly, the figure
shows two corresponding tracks. The left track describes pu-
tative processing stages and potential neural sites. The right
track describes the mathematical models for these stages pre-
sented in this paper. Each stage is a function, with operating
parameters, and a method for optimizing those parameters.
Before exploring those mathematical relationships in detail,
we will first briefly summarize the transformations at each
of the five stages.

• Stage 1. Filtered Detection
○ Modeled process.

The input to Stage 1 is the time history of the SPD
of the light incident at a given small region of the retina.
This is sampled by the trichromatic cone mosaic, with
output corresponding to values representing the cone
photon absorption rates in the three classes of cones.
For modeling surface colors we consider two of these
outputs. The first is the instantaneous rate correspond-
ing to the stimulus, and the second is a recent time
average rate, representing the presumed response to
the background due to sampling different regions with
saccades.

○ Mathematical representation.
The corresponding input is the SPD of light reflect-

ing to the eye from a test object and also the average
SPD of the scene. The filtering and detection of the
incident light is simulated by multiplying each SPD
with the corneal spectral sensitivities (cone fundamen-
tals) of each of the three cone types and integrating
them to determine the test and background “cone
photon absorption rates.”

• Stage 2. Compression and Light Adaptation
○ Modeled process.

The model-transformed cone signals are assumed to
follow a compressive nonlinearity such that responses
have greater sensitivity around the mean cone photon
absorption rate and smoothly asymptote at very low or
high levels. The response is adapted for the recent mean
by a gain control that adjusts to the recent history of
stimulation.

○ Mathematical representation.
The proposed mathematical form for the response is

the application of a sigmoidal transform function to a
logarithmic response function. This requires two
parameters: (1) a gain parameter that must be adjusted
as a compromise between too low a gain, which reduces
the signal-to-noise ratio, and too high a gain, which
increases information loss through output saturation;
and (2) an offset parameter that reduces the difference
between the degree of output clipping at the low end
and at the high end, thus optimizing information
transfer.

• Stage 3. Opponent Coding and Decorrelation of Cone
Responses
○ Modeled process.

Following conventional color models, the model
transformed cone signals are combined within three
post-receptoral mechanisms. These help to remove
the redundancies in the information carried by the dif-
ferent cones by recoding into channels that respond to
the sum or differences of the model transformed cone
signals. The summing channel is “nonopponent” and
forms a mechanism sensitive to achromatic variations.
The other two are “opponent” and take the difference of
the model-transformed cone signals to represent infor-
mation about the chromatic properties of the stimulus.
Within each, the signals are gain controlled to match
the range of inputs so that, over time, the statisticalFig. 3. Stages of information processing in the model.
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distribution of output values is similar across the three
mechanisms.

○ Mathematical representation.
In the model shown here, there are three numerical

coefficients that affect the calculation of each of the two
color difference signals, and they are assumed to be
tuned to the stimulus history. The proposed method
is to slowly adjust those parameters to ensure that, over
long times, (1) achromatic stimuli produce neutral
color signals, (2) the average of the output values is also
neutral, and (3) the r.m.s. output signal, relative to the
neutral point, has a nominally specified value (e.g., 1),
for optimal information transfer.

• Stage 4. Decorrelation of Opponent Signals
○ Modeled process.

The previous stage decodes the model-transformed
cone signals into three mechanisms with sensitivities
corresponding to the “cardinal” luminance and chro-
matic dimensions that have been postulated for early
post-receptoral color coding. Stage 4 involves a sub-
sequent rotation and scaling of the model chromatic
signals, and is included because the responses of the
cardinal mechanisms are often correlated for natural
color distributions. Specifically, this stage is included
to adjust to the “blue–yellow” bias in natural scenes,
as illustrated in Fig. 1. We note that Stages 3 and 4
could be implemented with a single transformation.
However, there is evidence to suggest that these adjust-
ments occur at different stages in the visual system [27].
Moreover, if they were combined into a single transfor-
mation, there would be no simple mechanism for adap-
tively tuning those parameters over time to achieve and
maintain accurate color perception.

○ Mathematical representation.
The equations at Stage 4 apply a rotation and rescal-

ing of the mechanism sensitivities. As in Stage 3, the
control parameters are determined in a simple way
to optimize the statistical distribution of the output
values.

• Stage 5. Field-Based Corrections
○ Modeled process.

To successfully predict appearance, color appearance
models must include additional “chromatic adaptation”
factors that normalize the model values to allow gray
and white surfaces to be correctly perceived as uncol-
ored under a range of differently colored illumination
conditions. A wide variety of mechanisms contribute to
this “color-constancy” correction.

○ Mathematical representation.
The mathematical treatment of this stage is simply

the global application of an additive correction to the
two color signals, to ensure that a neutral gray surface
appears approximately colorless. Additionally, to ex-
press the resultant color appearance information in
terms of the scaling used within the Munsell system,
three arbitrary scaling parameters are applied to express
the model output in terms of the Munsell ranges of
value and chroma, and with the correct zero point
for hue.

In the following, we elaborate and provide quantitative de-
tails for each of these stages.

A. Stage 1: Filtered Detection

Stage 1 involves the absorption of visible light photons by the
cone opsin molecules in the light-sensitive cone cells in the
retina. The intensity of light incident on the eye is generally
a function of the viewing direction, br, and the wavelength λ.
It is called the spectral radiance distribution (and more com-
monly the spectral power distribution or SPD), and is expressed
as Leλ�λ;br�, in units ofW∕sr ·m3. (Although these are the cor-
rect units, it is more common outside of physics literature to
use the units W∕nm · sr ·m2.)

There are three different kinds of cone cells in the retina of
the normal human trichromat, which differ in the photopig-
ments they contain and, thus, in their relative spectral sensitiv-
ity as a function of wavelength. Because of absorptions in the
lens, ocular media, macular pigment, and the retina itself,
the pigment absorption spectra are typically less relevant than
the corneal spectral sensitivities derived from psychophysical
color matching functions. These functions, often referred to
as cone fundamentals, are typically labeled L�λ�, M �λ�, and
S�λ� (based on the words long, medium, and short, which de-
scribe the relative wavelength of peak absorption). The model
described in this paper uses the CIE 10° 2006 cone fundamen-
tals [28]. The equal-area-normalized cone fundamentals
are depicted in Fig. 4. For the purposes of this paper, the
normalization is arbitrary because it does not affect the final
calculation.

Using these three relative response functions, we then define
three-cone photon absorption rates as follows:

L�br� � �683 lm∕W�
Z

L�λ�Leλ�λ;br�dλ∕
Z

L�λ�dλ; (1a)

M�br� � �683 lm∕W�
Z

M �λ�Leλ�λ;br�dλ∕
Z

M �λ�dλ;

(1b)

S�br� � �683 lm∕W�
Z

S�λ�Leλ�λ;br�dλ∕
Z

S�λ�dλ: (1c)

(Note that in each of these equations, the cone fundamental
spectral sensitivity functions appear in both the numerator
and the denominator, so the normalization factors for them

Fig. 4. Spectral sensitivity functions of the cones.

Research Article Vol. 33, No. 3 / March 2016 / Journal of the Optical Society of America A A323



cancel.) The units of L�br�, M�br�, and S�br� are cd∕m2.
According to this measure, an SPD with uniform spectral
radiance distribution and a photometric luminance Lν of
1 cd∕m2 will have that same numerical value, 1, for each of
L�br�, M �br�, and S�br�. For a general, non-uniform spectral ra-
diance distribution Leλ�λ�, the values L�br�,M �br�, and S�br� will
usually differ from one another, providing the basic informa-
tion available for color and also fundamentally limiting that
information. Specifically, the output of each cone is a function
of its rate of photon absorption—no information is provided
about the wavelength distribution of the absorbed photons, a
fundamental constraint known as the “principle of univariance”
[29]. Thus color information can be obtained only by compar-
ing the outputs of the three cone types.

B. Stage 2: Compression and Light Adaptation

While photon absorption is an approximately linear process (at
least up to an intensity that causes photopigment bleaching to
become significant), it is important to realize that, as a whole,
the visual system is highly nonlinear. For example, it is well
known that in vision, as well as most areas of perception,
the ratio of intensities of two stimuli is a better predictor of
the perceived difference between them than is their intensity
difference [30]. Nonlinearities of this kind are important given
the large intensity range over which color vision must operate.
People can see color over roughly a million-fold range of lumi-
nance values ranging from that of moonlit snow to sunlight
shimmering on a lake. Over this entire range, it is desirable
to be sensitive to small relative changes of intensity. This
has the advantage that a given object can appear much the same
when viewed under very different lighting conditions (because
when the light intensity changes, it is the ratios of reflected light
signals that remain constant).

A further important role of nonlinearity in neural processing
relates to the fact that neurons have a quite limited ratio of
dynamic range to noise. Typically, a graph of a neuron’s output
as a function of stimulus level has a “sigmoidal” shape, as
sketched roughly in Fig. 5. There may be a central region that
is fairly linear, but the response then approaches asymptotes at
both input value extremes.

A recognized rationale for this sigmoidal shape is that it pro-
vides maximum useful information when the frequency distri-
bution of input values has the form of the ubiquitous normal
(or Gaussian) distribution [31]. In this case, which we will use
here for simplicity, the ideal mathematical form shown in Fig. 5

is known as the error function, erf �x�, which is twice the cu-
mulative probability of a Gaussian distribution, where x is mea-
sured from its center in units of standard deviation. Its lower
limit, as x approaches −∞, is −1; its upper limit, as x approaches
∞, is 1, and for small values of x, the function is approximately
�2∕ ffiffiffi

π
p �x. Many consider the error function to be a very

simple, meaningful, and useful sigmoidal function. (However,
as with many other stages of the model we note that the
assumption of a Gaussian distribution, while common, is an
idealization that may not be perfectly realized in real systems.)

A further issue is that the world itself varies, and thus neural
responses must adapt to adjust to these changes. For example,
the narrow dynamic range of the system cannot represent the
enormous range of light levels we encounter during the course
of a day, and like a camera, must instead be continuously ad-
justed or centered on the much more limited range of contrasts
that occur at a given moment [32]. Similarly for color vision,
there is an ongoing need to adjust the operating parameters at
each stage, guided by the frequency distribution of fairly recent
previous signals, to optimize the transfer of information. This
tuning adjusts not only to the mean stimulus but also to its
variance or contrast, and could potentially also adjust to other
moments of the stimulus distributions and thus adjust the
shape of the transfer functions. Moreover, these adjustments
can occur over many time scales, with some integrating over
long intervals (of days, months, or years), while, in other cases,
the time constants may range from seconds to milliseconds
[33–37].

For the purpose of including these adaptation effects, we
must now consider the initial encoding of color in more detail.
To do so, we need to define certain key components that de-
termine the reference frame or context for judging a color.
Recall that Eqs. (1a)–(1c) defined the color information for
a given SPD as L�br�, M�br�, and S�br�, with the dependence
on br indicating that, in a typical environment, these vary with
the viewing direction. We must now be more specific about
viewing directions. For the rest of this paper we will use three
different triads of color information, as follows:

• Lt,M t, and St will denote the L�r̂�,M�r̂�, and S�br� values
for a test surface in the direction r̂ t;

• Lf , M f , and S f will denote the L�br�, M�br�, and S�br�
values averaged over the current visual field; and

• Lo, M o, and So will denote the L�br�, M �br�, and S�br�
values of a very long-term average over many scenes/fields.

Overall, the situation can be summarized approximately as
follows: the apparent color of a “test” surface depends on the Lt,
M t, and S t values for the light reflecting from it, and also de-
pends on Lf , M f , and S f , and likely also on Lo, M o, and So.
Thus, we seek to understand the process by which these nine
values produce the observed color experience denoted by the
three values, H , V , and C , of the Munsell system.

Next, we model the nonlinearity in the cone response. The
model response is depicted in Fig. 6. In this plot, the vertical
axis has arbitrary scaling. In many measurements of cone re-
sponses to light, this form of response is observed, although
it is usually described by a different function, known as the
Naka–Rushton [29] equation, of the form 2In∕�1� In� − 1.
The equation we use here is essentially equivalent numerically,

Fig. 5. Schematic model of how a neuron output signal depends on
the net effect of its input signals.
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but the form we use was selected because it is conceptually sim-
pler, and because it represents the sequential application of two
simple functional relationships that have a clear computational
utility as described in this paper. In contrast, there is no known
physiological mechanism for emulating the fractional powers
within the Naka–Rushton equation. The response function
shown in Fig. 6 is approximately log-linear in a central portion
of its range, which corresponds to about 2 orders of magnitude
of luminance. The range is centered by adaptation according to
the average recently experienced (i.e., “ambient or back-
ground”) light level. For example, the dashed curve in
Fig. 6 shows the response when the ambient luminance level
is dim (1 cd∕m2), and, conversely, the dotted curve shows the
opposite situation in response to much brighter outdoor day-
light (10; 000 cd∕m2).

To quantitatively model the response, we’ll need to intro-
duce two constants:

• Cc, a cone contrast factor, which determines the steepness
of the slope of the cone response function; and

• Cf , a cone feedback factor, which is the coefficient for the
automatic gain control based on a cone’s time-averaged signal.

For the three cones, we will denote the resultant model
transformed cone signals as

L 0 � erf

�
Cc

�
ln

�
Lt
Lo

�
� Cf ln

�
Lf
Lo

���
; (2a)

M 0 � erf

�
Cc

�
ln

�
M t

M o

�
� Cf ln

�
M f

M o

���
; (2b)

S 0 � erf

�
Cc

�
ln

�
S t
So

�
� Cf ln

�
S f
So

���
: (2c)

In this model, the constants Cc, Cf , and Lo, M o, So could
potentially be determined by evolution and could be fixed for
any individual. On the other hand, it is possible that Lo, M o,
and So could be determined by the very long term exposure of
individuals to light. As depicted by the values shown in Fig. 11,

we have set the Lo, M o, and So to be the values that would be
obtained for a gray 20% reflective surface illuminated by mid-
morning or mid-afternoon sunny daylight, with a luminance of
5000 cd∕m2 and a color temperature of 5500 K. The results
depend only weakly on this choice and were selected as a rea-
sonable proxy for an average viewing condition.

It should be noted that Eqs. (2a)–(2c) contain division op-
erations, yet there is no known simple way for neurons to di-
rectly carry out a division operation, and it would seem even
more improbable within a single cone cell. However, it does
appear that cone cells have the ability to emulate the calculation
of Eqs. (2a)–(2c). Potentially, this could involve a combination
of an intrinsic logarithmic response with various time-averaged
feedback mechanisms [38]. (Some might find the idea of
physically emulating the mathematical logarithm function
daunting. However, chemical systems can do this. For example,
in the common pH meter, a simple cell produces an electrical
potential difference directly related to pH, which is propor-
tional to the logarithm of the concentration of H+ ions. In
general, exponential relationships are commonplace in chemi-
cal dynamics, and so, therefore, are their inverse, logarithmic
relationships.)

If the frequency distribution of the logarithm of intensity is
the common Gaussian distribution, then applying the error
function to the logarithm of intensity, as depicted in Fig. 6,
will convert to a uniform frequency distribution of output val-
ues. For this reason, we have used the error function applied to
the logarithm as the model for the sigmoidal cone response
function. For subsequent processing signals, for which a loga-
rithmic transform is not relevant, we could simply use the error
function to represent a sigmoidal input/output response. In
reality, at least with surface samples and the light intensities
studied in this paper, there is little or no computational benefit
from using the sigmoidal form in the remaining stages.

C. Stage 3: Opponent Coding and Decorrelation of
Cone Responses

To summarize, L 0,M 0, and S 0 are the model-transformed cone
signals in response to the current color sample and its back-
ground. This recoding is a tremendous improvement over
the raw L, M , and S excitations for the light itself, thanks
to the automatic gain control and logarithmic compression.
Nevertheless, these signals remain poorly suited for efficiently
representing color.

The difficulty is shown in Fig. 7, where pairs of the values
for L 0, M 0, and S 0 are plotted for 99 colored surfaces that were
selected from a large data base of real samples, by means of a
Monte Carlo procedure guided by criteria assuring a set of
samples that are very uniformly distributed from several per-
spectives [39]. As can be seen, there is considerable correlation
among these three signals, especially between the L 0 and M 0

signals [40]. This arises from the fact that there is considerable
overlap of the spectral sensitivities of the cones. It is well known
that it is computationally inefficient to transport highly corre-
lated signals [16]—and thus it would be evolutionarily advanta-
geous to develop a simple arrangement for combining cone
responses in a way that reduces this problem, providing
the conversion itself is simple. This is thought to be a major

Fig. 6. Model values (arbitrary scaling) representing a cone output
versus logarithm of intensity, based on a truncated logarithm function
of the form Output � erf �0.26 ln�I∕�100 cd∕m2 B�̂ ·5��, where I is
the intensity and B is the logarithmically averaged recent intensity,
both in cd∕m2.
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rationale for converting the model-transformed cone signals
into a color-opponent representation [16].

Thus, in Stage 3, the L 0, M 0, and S 0 independent model-
transformed cone signals are combined to produce three differ-
ent output signals [17]. In the actual retina, this is initiated
within the various neural connections from the receptors to
horizontal and bipolar cells in the retina, where emulation
of the linear combination processing is quite feasible because
neurons can have both excitatory and inhibitory inputs. A wide
variety of distinct cell types with different spectral sensitivities
have been identified in the primate retina, and how these might
contribute to various aspects of color perception remains un-
certain [41,42], but the general transformation of the indepen-
dent cone signals into non-opponent or opponent mechanisms
is well established.

For our model, the first step of Stage 3 is to recode the
model-transformed cone signals into channels that separately
carry the achromatic and chromatic content of the stimulus
as follows:

λ� � 0.5L 0 � 0.5M 0; (3a)

α � L 0 −M 0; (3b)

β � 0.5L 0 � 0.5M 0 − S 0: (3c)

Note that partial decorrelation occurs because the channels
now respond to the sums or differences of the model-
transformed cone signals (effectively realigning the axes of
the mechanisms in Fig. 7 so that they lie along the positive
or negative diagonals). The first value, λ�, is a signal related
to the lightness of the stimulus. The value α corresponds to
a reddish versus blue–green opponent color axis (red is positive,
blue–green negative) and is based on comparing the L 0 andM 0

model-transformed cone signals. The value β relates to a yel-
low–green versus purple opponent color axis and is based on
comparing L 0 and M 0 model-transformed cone signals to S 0

model-transformed cone signals. (Here these terms are simply
a notation for labeling the content described mathematically in
the relevant equations. They do not represent precisely defined
color dimensions at this stage. Furthermore, the sign for α and
for β is arbitrary, and here we have simply used the most
common convention. The visual system in fact includes cell

types encoding both polarities, e.g., in “on” and “off” cells
for luminance. The polarity of the β channel is such that
“yellow–green” is positive to be consistent with the polarity
of many color spaces, However, we should note that this is op-
posite to the polarity depicted in the diagram shown in Fig. 1,
and is also at odds with the preponderance of S-cone “on” cells
found in the retina [42].)

The specific combinations shown may be considered, by
some, to be simple and appropriate for another reason: most
mammals have only two cone types–an S and a single longer
wave cone type. Among mammals three-cone vision is largely
exclusive to old world primates, and arose from an evolutionar-
ily recent (40 Mya) duplication of the long-wave pigment gene.
For this reason, the two opponent dimensions have been de-
scribed as the ancient (S versus LM ) and modern (L versus M )
subsystems of human color vision [43].

The second step of Stage 3 again involves the overall shape
and scaling of each mechanism’s response. The opponent cal-
culation for both α and β requires considerably more gain than
the λ� channel, since, as noted, the difference signals they mea-
sure are much smaller because of the overlapping L�λ�, M �λ�,
and (to a lesser extent) S�λ� sensitivity functions. Further, we
again assume that it may be desirable for the signal transforma-
tion at this point to have its output functional form adjusted
parametrically to yield a statistically uniform distribution of
output values. We have not found a sigmoidal transfer function
to be essential at this point, but we have found some advantage
for fitting the Munsell system in allowing a different gain
for positive outputs than for negative outputs, as depicted
in Eqs. (3d) and (3e), although the potential mechanisms
for achieving this affect and adjusting its performance are
uncertain:

if α ≥ 0; α 0 � cgα1p α; if α < 0; α 0 � cgα1n α; (3d)

if β > 0 β 0 � cgβ1p β; if β < 0; β 0 � cgβ1n β: (3e)

In this amplification stage, the expectation is that the four
constants represent parameters that would adapt over time in
response to stimuli [10], so that on average the mean value for
both α 0 and β 0 would be 0 and their standard deviation would
be an arbitrary constant of 1. In our model, we carry out
that calculation by evaluating α 0 and β 0 for the previously

Fig. 7. These graphs plots of pairs of L 0, M 0, and S 0 for 100 randomly selected points in color space, showing they are highly correlated.
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mentioned set of 99 uniformly distributed reflectance spectra
and adjusting the constants in Eqs. (3d) and (3e) as just
described.

Figure 8 shows the same stimulus set as that for Fig. 7, but
now replotted in terms of the partially decorrelated and scaled
opponent mechanisms β 0 versus α 0, β 0 versus λ�, and α 0

versus λ�.
As noted above, for ordinary surfaces at typical light levels, it

does not appear necessary to incorporate a sigmoidal character
in the output of Eqs. (3d) and (3e). However, for highly satu-
rated brightly illuminated stimuli, it is possible that some color
distortion might arise from saturation. For intense narrowband
LEDs and lasers, the distortion of hues could become apparent.
Hue distortions of this type are observed in what is called the
Bezold–Brücke effect [44], and it is possible that a nonlinearity
could be feasibly incorporated to help predict this effect.

D. Stage 4. Decorrelation of Opponent Signals

As previously mentioned, the initial opponent stage signifi-
cantly reduces the correlation between the model-transformed
cone signals, but the opponent signals themselves may still
have remaining correlations depending on the choice of
axes. In fact, the left-hand plot in Fig. 8 reveals a positive
correlation between the α 0 and β 0 responses, because the
signals vary more along the positive diagonal (a yellowish–
bluish axis that is also prevalent in many natural scenes but
reflects covarying signals in the L versus M and S versus
LM cardinal mechanisms [45]). This residual correlation could
be removed by an additional subtractive stage, which applies a
differential gain in the�45° directions, as depicted in Eqs. (4a)
and (4b), and as anticipated in previous observational studies
[46,47]:

α 0 0 � cgα2�α 0 � β 0�; (4a)

β 0 0 � cgβ2�α 0 − β 0�: (4b)

Unlike Stage 3, we found little value in a different gain for
positive input values versus negative ones, and so there are just
two constants that are to be determined, as in Stage 3, by ad-
justment to achieve a standard deviation of 1 for the distribu-
tion of α 0 0 and β 0 0 values found for the previously mentioned
set of 99 uniformly distributed reflectance samples. It should
also be noted that this is another case wherein the underlying

neural mechanisms may take a very different form. There is
considerable evidence for—and also some against—the idea
that at cortical levels the cardinal mechanisms are transformed
into multiple “high-order” mechanisms tuned to different di-
rections in color space [27,48,49]. The advantage of these
multiple mechanisms is not immediately obvious from the per-
spective of efficient coding (since they are redundant with the
information already carried by the three cardinal axes).
However, this “multiple channels” code could allow the visual
system to use a population code for hue, in the same way that it
appears to represent other dimensions such as spatial orienta-
tion. In this case, the implementation would not involve de-
correlation but rather adjustments of the relative gains within
each mechanism. In either case, the critical point is that the
mechanisms are adjusted so that the distribution of responses
is made approximately spherical [49].

As an aside, it is important to ask whether the additional
parameters in Stage 4 are actually adding value by significantly
reducing the r.m.s. difference between the model-predicted
H , V , C values and the actual Munsell values. This is an im-
portant consideration because, generally, when striving to re-
duce r.m.s error between experimental data and a model fit,
merely adding extra parameters, even if they have no meaning,
will often slightly improve the fit if the parameters are carefully
selected by means of an optimization algorithm. In this case,
there are two reasons to believe these added parameters do have
meaning. First, the added parameters were not adjusted by an
optimization process to reduce the fitting error, so the fact that
the fit was significantly improved strongly suggests the added
parameters are an improvement to the model. Second, there are
standard statistical tests to determine the fit improvement that
would be expected purely from adding free, but meaningless,
parameters to a model. To check this, we used the well-known
Akaike [50] approach to statistical model selection, which pro-
vides what is called the Akaike Information Criterion (AIC),
which depends on the number of data points and the fit im-
provement obtained by adding new parameters. We found
these additional parameters significantly increase the AIC score,
indicating they likely provide improved understanding. That is,
the small increase in the overall number of parameters (effec-
tively from five to eight), reduces the residual square error of
the fit to less than 50% of its original value based on the five
parameters. This improvement is far greater than one would
expect from added parameters that did not significantly refine
the model.

Fig. 8. Decorrelation of the modeled cone signals by recoding into opponent and non-opponent responses.
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As evidence of the beneficial overall effect of this higher-
order decorrelation, the same stimulus set as in Fig. 8 is
again replotted as pairs of values β 0 0 versus α 0 0, β 0 0 versus
λ�, and α 0 0 versus λ� in Fig. 9, which shows that the distribu-
tion is fairly uniform.

E. Stage 5: Field-Based Corrections

There are necessarily many additional subtle and elaborate
processes that adjust color percepts according to sophisticated
inferences about the stimulus, but they are likely not required
for the primary goal of this paper—to compare the output of
the model with the organization of color experience implied by
the Munsell system.

To make this comparison, we first need to scale the output
values to match the arbitrary scaling range of the Munsell color
system. This consists of an arbitrary rotation of angle θ, and
arbitrary linear scaling to give values the correct range for
the Munsell system equivalents of λ�, α 0 0 and β 0 0, here termed
λ�int, αint, and βint (with the subscript standing for intermedi-
ate.) The scaling equations are as follows:

λ�int � 14.0�λ� � 1�; (5a)

αint � 4.99�cos�65.8°�α 0 0 − sin�65.8°�β 0 0�; (5b)

βint � 4.99�sin�65.8°�α 0 0 � cos�65.8°�β 0 0�: (5c)

Note that in Eq. (5a), the value 1 simply corresponds to the
fact that the lowest possible value for λ�, based on the error
function, is −1, which corresponds to ideal black, for which
the Munsell value is zero. The last step is the problem of color
constancy—separating the color of the surface from the color of
the lighting. A certain amount of chromatic adaptation has
already occurred as a result of the time-averaged adaptation
that was introduced in Stage 2. (Indeed, if the coefficient Cf

were to be set to −1, all color shift arising from the illuminant
color would, over time, be suppressed as this adaptation took
place.) However, it is observed that this does not happen—
color adaptation is not total, so the observer is able to know,
weakly, the color and intensity of the ambient illumination.
Another observation is that people are able to discount an
illuminant immediately, in the sense that a piece of paper
looks white, almost instantly, after the illuminant color has
shifted [51], whereas adaptation is typically defined as a process
that takes time. This instantaneous constancy requires spatial
comparisons (e.g., the paper may not look white if it is seen in
isolation), and can be quite sophisticated, taking into account
the relative changes across surfaces and spatial variations in the
intensity and color of the illuminant [52–54].

Fig. 9. Improved output distribution after secondary encoding of the color signals (Stage 4).

Fig. 10. Top row consists of seven separate plots of sets of Munsell samples for successively increasing value from 3, at the left, to 9, at the right.
For each plot, the polar angle represents the Munsell hue, depicting 10 principal Munsell hues, and the radial distance represents the chroma, in
increments of 2 Munsell units. By definition, this is a regular geometrical arrangement. The bottom row shows the corresponding plots for the
output values generated by Eqs. (5d)–(5f ). In converting from Cartesian to polar coordinates, the hue angle θ is determined by tan�θ� �
�βout∕�αout� and the chroma is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�αout�2 � �βout�2

p
. If the fit were perfect, the patterns of the bottom row plots would perfectly match

those of the top plots. The colors of the points shown are approximately the Munsell color corresponding to each plotted point.
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For the purpose of comparing to the Munsell color set, it is
sufficient to use a very simple white-balance procedure, in
which the color shift (caused by changing the illuminant),
for a neutral gray 20% reflective surface is evaluated. These
evaluated shifts for the α and β channels are, respectively, la-
beled Δαc, and Δβc. Using these shifts, the Cartesian output
values for comparison to the Munsell color set are as follows:

Munsell V : λ�out � λ�int; (5d)

Munsell C cos�H �: αout � αint − Δαc; (5e)

Munsell C sin�H �: βout � βint − Δβc: (5f)

Figure 10 shows that these five mathematical stages do a
rather good job of modeling the perceptual experiences por-
trayed in the Munsell Color System. The top row depicts
the arrangement of Munsell colors, for each of the 10 principal
Munsell hues, with seven plots, one for each of the Munsell
values ranging from 3 to 9. These are by definition placed
in the regular arrays shown. The bottom row depicts the output
of the model presented here. Ideally, the patterns in the bottom
row would perfectly match those in the top and the fit is ac-
tually fairly good: the RMS error between the Munsell values

and the model values is about 1∕2 unit in each direction, which
is likely similar to the experimental error that is intrinsic to the
Munsell system.

Figure 11 concisely summarizes the equations from the five
stages described above, including the numerical values used for
the parameters in the model.

Another characteristic of this model is that it also demon-
strates several well-known observations that have long been
attributed to nonlinear aspects of the color vision system.
They include the Hunt effect, whereby surfaces appear less
colorful at low light levels, the Abney effect, in which dilution
of monochromatic light by white light produces hue shifts, and
several others, which will be interesting areas for further study
with this model.

3. CONCLUSIONS

The purpose of this paper has been to illustrate how the seem-
ingly complex and unexplained characteristics of a popular
approximately uniform color appearance system can be ap-
proached from fairly straightforward and plausible ideas about
color coding in the visual system.We have done this by means of
a simple computational approach that fulfills the standard sci-
entific modeling objectives of simplicity, accuracy, integrability,

Fig. 11. Concise compilation of the equations of the five stages of the model, with the constants used to produce the results in Fig. 10. The only
physiologically relevant parameters that were adjusted for that purpose are those in Eq. (2). The others arise from the statistical approach described
here. For purposes of the data shown in Fig. 10, the Munsell samples were assumed to be illuminated with CIE Illuminant C and with uniform
illuminance that causes a white surface to have a luminance of 400 cd∕m2.
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and correspondence, as well as plausibility from the perspec-
tives of evolution, organismal development, and sensory adap-
tation. The quantitative expressions for each of the five stages
are intentionally simple and undoubtedly imperfect, but never-
theless they describe the observable phenomena of color ap-
pearance metrics with reasonable accuracy. It is hoped the
model’s simplicity will be valuable pedagogically and perhaps
stimulate new avenues of color perception research. As well,
some may find it more satisfying to use the simple equations
of this model for calculating anticipated color perception expe-
riences. The results will not differ significantly from those of
already available (but much more complex and less intuitive)
calculation tools, but we hope the newfound simplicity will
result in deeper understanding, and, perhaps, new insights.
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