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Summary

Encoding the temporal properties of external signals that comprise multimodal events is a major 

factor guiding everyday experience. However, during the natural aging process, impairments to 

sensory processing can profoundly multimodal temporal perception. Various mechanisms can 

contribute to temporal perception, thus it is imperative to understand how each can be affected by 

age. In the current study, using 3 different temporal order judgment tasks (unisensory, 

multisensory and sensorimotor), we investigated the effects of age on two separate temporal 

processes: synchronization and integration of multiple signals. These two processes rely on 

different aspects of temporal information, either the temporal alignment of processed signals or the 

integration/segregation of signals arising from different modalities, respectively. Results showed 

that the ability to integrate/segregate multiple signals decreased with age regardless of the task, 

and that the magnitude of such impairment correlated across tasks, suggesting a widespread 

mechanism affected by age. In contrast, perceptual synchrony remained stable with age, revealing 

a distinct intact mechanism. Overall, results from this study suggest that aging has differential 

effects on temporal processing, and general impairments with aging may impact global temporal 

sensitivity while context-dependent processes remain unaffected.
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Introduction

As we go about our everyday routines, we seldom notice the temporal discrepancies between 

sensory signals that constitute the events we experience. For instance, speech provides both 

auditory and visual cues (accompanying mouth movements of the speaker) that are 

processed within the brain at different speeds, yet speech is perceived as a simultaneous 

multisensory event (Conrey and Pisoni, 2006; van Wassenhove et al., 2007; Eg and Behne, 

*Corresponding author. ascurry@unr.edu (A.N. Scurry).
Present address: Department of Psychology, University of Nevada, Reno, 1664 N. Virginia Street Mail Stop 296, Reno, NV 89557, 
USA

HHS Public Access
Author manuscript
Multisens Res. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
Multisens Res. ; : 1–22. doi:10.1163/22134808-20191343.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2015). Compensation for small temporal differences is beneficial for coherent multisensory 

experiences. However, just as important is segregation of asynchronous sensory signals that 

belong to different sources. Unfortunately temporal sensitivity, i.e. the ability to discriminate 

the timing of multiple sensory signals, is not stable across the lifespan and deteriorates with 

age, leading to incoherent and unreliable global percepts (Setti et al., 2011; Baum and 

Stevenson, 2017; Brooks et al., 2018; Stevenson et al., 2018).

Reduced temporal sensitivity in the aging population manifests in an impaired ability to 

determine the temporal separation, and likewise the temporal order, between two 

asynchronous stimuli (Setti et al., 2011; Chan et al., 2014; Bedard and Barnett-Cowan, 

2016). This deficit is also related to the widening of the temporal binding window, the time 

span over which sensory signals arising from different modalities appear integrated into a 

global percept (Bedard and Barnett-Cowan, 2016; Baum and Stevenson, 2017). With poor 

temporal sensitivity, elderly individuals are inclined to bind together stimuli even when they 

are separated by large delays (Setti et al., 2011; Bedard and Barnett-Cowan, 2016; Stevenson 

et al., 2018). As a result, the aging process leads to a deficit in integrating cross-modal 

information and segregating unrelated sensory signals, sensory overload and increased 

susceptibility to multisensory illusions (Stevenson et al., 2012; Setti et al., 2014).

Temporal perception impairments in older individuals are not limited to multisensory 

interactions. Older adults also show deficits in unisensory temporal processing, such as in 

auditory duration discrimination (P J Fitzgibbons & Gordon-Salant, 1995; Peter J. 

Fitzgibbons & Gordon-Salant, 1994) and auditory temporal order judgements (Ulbrich, 

Churan, Fink, & Wittmann, 2009), and in visual gap detection (Humes et al., 2009) and 

visual temporal order judgements (Ulbrich et al., 2009; Busey et al., 2010). In the 

sensorimotor domain, temporal sensitivity (Vercillo et al., 2017), accuracy in predicting the 

time-course of observed actions (Diersch et al., 2012), and precise coordination and control 

of voluntary actions (Heuninckx et al., 2005; Seidler et al., 2010) are impaired with aging. 

Moreover, there is an increased visual reliance on balance in older adults (Jeka et al., 2010; 

Franz et al., 2015) and delays in visual feedback during postural control results in poorer 

performance in older compared to younger adults (Yeh et al., 2014). While these findings are 

not unexpected, since the sensory and motor systems each exhibit global structural and 

perceptual declines with natural aging (Howarth and Shone, 2006; Seidler et al., 2010; 

Werner et al., 2010; Owsley, 2011; Andersen, 2012), it is still important to identify specific 

effects of aging on the temporal binding of multiple sensory signals and of sensory and 

motor signals. Further, using the visual system in multisensory and sensorimotor 

combinations is of particular interest since healthy older adults become more visually 

dominant when performing multisensory detection tasks and postural control tasks (Jeka et 
al., 2010; Diaconescu et al., 2013; Yeh et al., 2014; Franz et al., 2015; Murray et al., 2018).

Age-related temporal deficits may reflect the impairments of a general all-inclusive 

mechanism that applies to all aspects of temporal perception or the deficits may reflect 

discrete mechanisms that apply to different aspects of temporal perception. On one side, 

perceptual studies support the idea of a shared timing mechanism, showing transfer of 

perceptual training from unisensory to multisensory temporal perception (Stevenson et al., 
2013) and vice versa (Alais and Cass, 2010), as well as transfer of temporal adaptation from 
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the audio-motor to the visuo-motor domain (Heron et al., 2009; Sugano et al., 2010). 

Additional evidence for a central timing mechanism comes from studies on neurological 

disorders, such as Parkinson’s disease, and animal models of depleted dopaminergic circuits 

that reveal temporal processing impairments (Meck, 2006b, 2006a; Allman and Meck, 2012; 

Jones and Jahanshahi, 2014). Specifically, the dopaminergic cortico-striatal system that 

supports time perception as well as motor and executive functions (Meck and Benson, 2002; 

Meck, 2006a; Jahanshahi et al., 2010; Agostino and Cheng, 2016; Matthews and Meck, 

2016), is one of the most sensitive to age-related declines (Li and Backman, 2010; Turgeon 

et al., 2016).

Alternatively, temporal deficits may result from impairments to specific mechanisms guiding 

different aspects of time perception. Studies using transcranial magnetic stimulation have 

revealed distinct cortical regions necessary for proper performance in auditory and visual 

temporal tasks (Bueti, Bahrami, et al., 2008; Bueti, van Dongen, et al., 2008). Duration 

perception studies also provide evidence for modality-specific clocks rather than a singular 

central clock for interval estimation (Morrone et al., 2005; Burr et al., 2007; Klink et al., 
2011).

Age-related changes in temporal processing not only may reduce temporal sensitivity but 

could similarly affect perceptual synchrony. Perceptual synchrony has been previously 

quantified through the point of subjective simultaneity (PSS), i.e. the physical temporal 

delay between two signals at which an observer is unsure about their temporal order (Stone 

et al., 2001). In other words, the PSS is the physical asynchrony between two signals that 

induces perceptual synchrony. The percept of synchrony is often guided by prior experiences 

wherein naturally occurring time differences are learned reflecting the unique properties of 

sensory stimuli as well as the temporal properties of neural processing. Prior studies 

comparing perceptual synchrony between older and younger adults do not reveal any effect 

of age for both audiovisual (de Boer-Schellekens and Vroomen, 2014; Bedard and Barnett-

Cowan, 2016) and visual only tasks (de Boer-Schellekens and Vroomen, 2014; Norman et 
al., 2014). Possibly, compensatory mechanisms take place in the aging brain to account for 

changes in sensory processing and prevent extreme variations in the perception of unity 

between multimodal signals.

In the current study we investigated the effects of aging on two distinct aspects of temporal 

processing, 1) temporal sensitivity and 2) perceptual synchrony, across multiple modalities: 

visual (unisensory), audiovisual, and visuomotor temporal order judgment tasks. While 

sensitivity has previously been shown to decline with age, as discussed above, little attention 

has been given to how perceptual synchrony may be affected with age. Perceptual synchrony 

is a foundation of multimodal processing and guides subjective experience, thus it is 

extremely important to assess whether such a mechansism is preserved in older adults. 

Elucidating how these two processes vary across conditions and between different age 

groups, can shed light on the temporal mechanisms affected by aging.
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Material and methods

Participants

Fifteen young adults (mean age: 22.7 ± 0.60 years, 10 females), 15 middle-aged adults 

(mean age: 45.7 ± .87 years, 8 females), and 15 older adults (mean age: 67.9 ± 0.75 years, 

12 females) were recruited from the University of Nevada, Reno and the surrounding 

community to participate in the study. The middle-aged group was included to track gradual 

impairments in temporal processing induced by aging. All subjects completed each of the 

three tasks except for 1 young subject that did not complete the audiovisual temporal order 

judgment (TOJ) task. All subjects reported normal or corrected to normal vision and normal 

hearing. Participants were verbally screened for any history of neurological or psychiatric 

disorders as well as cognitive decline. All participants were right handed. Older adults were 

additionally screened for any hearing loss and were required to have a pure tone threshold 

lower than 40 dB for 1 and 2 kHz. Participants provided signed informed consent before any 

experimentation and were financially compensated for their time. Protocol was reviewed and 

approved by the Institutional Review Board at the University of Nevada, Reno.

Stimuli

Stimuli were generated using MATLAB (Mathworks, Natick, MA) and Psychtoolbox 

extensions (Brainard, 1997; Pelli, 1997). The visual stimulus was a stationary white circle 

with a diameter of 3.5° presented on a grey background for 30 ms.In the audiovisual TOJ 

task, the auditory stimulus was a 30 ms pure tone of 1000 Hz created in MATLAB and 

presented at 75 dB via a speaker that was positioned in front of the computer screen. Figure 

1A shows a graphical representation of the experimental setup. The visual and auditory 

stimuli were delivered through a Display ++ system with a refresh rate of 120 Hz and an 

AudioFile stimulus processor (Cambridge Research Systems).

Audiovisual TOJ task

Participants were asked to determine the temporal order between an auditory and a visual 

stimulus, both presented centrally. During the temporal order judgment (TOJ) task, 

participants sat 57 cm from the computer screen. Each trial began with participants focusing 

attention on a central fixation cross for 500 ms (Fig. 1B). The cross then disappeared from 

the screen indicating the stimuli were about to be presented. The temporal difference 

between the two stimuli was defined by a method of constant stimuli algorithm. Stimulus 

onset asynchrony (SOA) values were selected from a uniform distribution between −500 to 

+ 500 ms, with 50 ms steps, where negative SOAs indicated the visual stimulus leading and 

positive SOAs indicated auditory stimulus leading. Each SOA value was repeated 5 times in 

random order. At the end of each trial, participants were asked to report whether the visual 

stimulus was displayed before or after the sound by pressing a computer key. Participants 

performed a total of 105 trials (see Fig. 1B for a schematic representation of the 

experimental procedure).
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Visuomotor TOJ task

To assess sensorimotor timing, we employed a TOJ task adapted from Vercillo et al. (2017). 

The motor action was a voluntary button press recorded via a CB6 response box that 

interfaced with the Display++. To prevent any auditory feedback that could result from the 

button press, participants wore headphones that played white noise throughout the 

experiment.

At the start of each trial, participants fixated a black cross in the center of the monitor for 2 

seconds. Once the cross disappeared, participants were instructed to press a button on the 

response box. The latency of the visual stimulus was calculated from the disappearance of 

the fixation cross. Subjects were asked to verbally report whether they perceived the visual 

stimulus before or after their button press (see Fig. 1C for a schematic representation of the 

experimental procedure).

The latency of the visual stimulus, and consequently the SOA values, were partially 

determined by the participant’s observed reaction time. For this reason, prior to 

experimentation, participants performed a practice block of 30 trials to calculate individual 

reaction times and modify the latency of the visual stimulus during the experimental block. 

Latencies were calculated from the timing of the disappearance of the fixation cross and 

were selected to ensure that the visual stimulus was presented either before or after 

participants’ button presses. The protocol attempted to present the visual stimulus before and 

after the individual’s button press at the following “ideal” SOA values: 0 ms, ±20 ms, ±40 

ms, ±60 ms, ±80 ms, and ±100 ms. Specifically, to obtain a SOA value equal to 0, the 

latency of the visual stimulus was set to the participant’s average reaction time. Other SOA 

values were obtained by adding/subtracting the ideal SOA value to the average reaction 

time. It should be noted that as the participant’s reaction time varied from their average on 

each trial, these SOA values are relative and not exact. However, using this paradigm, we 

were able to present stimuli with SOAs as great as ±300 ms. Stimuli were delivered with a 

method of constant stimuli algorithm where each ideal SOA value was repeated 10 times in 

random order for a total of 110 trials.

Visual TOJ task

This unisensory task measured the ability to discriminate the temporal order of two visual 

stimuli that were presented at the right and the left side of the screen (Figs 1A, 1D). A 

fixation cross was always displayed in the center of the screen for the participant to focus on. 

Each trial, two visual stimuli flashed on the screen, one 18° to the right and the other 18° to 

the left of the fixation cross. The temporal asynchrony between the two stimuli randomly 

varied between −300 to +300 ms with 25 ms increments, with negative SOAs representing 

left-leading trials and positive SOAs representing right-leading trials. At the end of each 

trial, participants were instructed to determine which stimulus (the left or the right) appeared 

on the screen first and respond via a keyboard press. Each SOA value was repeated 5 times 

in random order for a total of 125 trials (see Fig. 1D for a schematic representation of the 

experimental procedure).
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Data analysis

For each task, the individual’s perceptual responses were plotted as a function of SOA 

values. The characterization of the response depended on the task: visual TOJ – proportion 

of “left first”; audiovisual TOJ – proportion of “flash first”; sensorimotor TOJ – proportion 

of “flash first”. Individual data were then fit with a psychometric function and two 

parameters, the mean and the standard deviation, were estimated from the cumulative 

distribution (Weber, 1834; Fechner, 1860; van Eijk et al., 2008; Burr et al., 2009; Vercillo et 
al., 2017). The mean represented the point of subjective simultaneity (PSS), a measure of 

perceptual synchrony, and of the participant’s bias in determining temporal judgments. The 

standard deviation represented the sensitivity, or just noticeable difference (JND), which is 

the smallest temporal differences between the two stimuli (or the motor and the sensory 

signal) that a participant could reliably detect (1 SD = 1 JND). A bootstrap procedure (Efron 

and Tibshirani, 1994) was used to determine the standard errors of both estimates. JND and 

PSS values were then averaged across subjects within each age group. To assess statistical 

differences between age groups and associations between estimates, repeated measure 

ANOVAs and linear regression were performed. To further quantify and interpret non-

statistical results (Dienes, 2014; Morey et al., 2016), we calculated Bayes Factors using the 

BayesFactor package in the statistical software R (Richard Morey, 2018). Default priors 

were used for both ANOVA and linear regression designs (Rouder and Morey, 2012; Rouder 

et al., 2012).

Results

Figure 2A shows average JND values for each age group for all three temporal tasks. Black 

bars represent young adults, dark grey bars represent middle-aged adults and light grey bars 

represent older adults. Overall, older adults showed higher JNDs than young adults, while 

neither group differed from middle-aged adults. Average JNDs in the audiovisual task were 

equal to 179.1 ± 25.0 ms for young adults, 216.1 ± 28. 5 ms for middle-aged adults, and 

260.3 ± 27.3 ms for older adults. Similarly, in the visuomotor task, average JND values were 

69.9 ± 8.2 ms for young adults, 69.1 ± 6.3 ms for middle-aged adults, and 99.8 ± 9.6 ms for 

older adults. In the visual task the average JND for young adults was 45.6 ± 12.4 ms, 44.3 

± 11.1 ms for middle-aged adults and 75.3 ± 11.4 ms for older adults. A repeated measure 

ANOVA (within factor: task, between factor: age) revealed a main effect of task (F(2,82) = 

102.93; p < 0.001; partial ƞ2 = 0.72) and a main effect of age (F(2, 41) = 3.84; p < 0.05; 

partial ƞ2 = 0.16) but no interaction (F(4,82) = 0.951; p = 0.439; partial ƞ2 = 0.04). Post-hoc 

comparisons with Bonferroni adjustments showed that audiovisual JND estimates were 

significantly larger than both visuomotor (p < 0.001) and visual JND measures (p < 0.001). 

In addition, visuomotor JND values were significantly larger than visual JND values (p < 

0.001). To determine differences between age groups, post-hoc Tukey HSD analyses were 

used. Older adults had significantly larger JND values than younger adults (p < 0.05) but not 

compared to middle-aged adults (p = .128). Moreover, middle-aged adults did not 

significantly differ from young adults in their JND values (p = .762). To quantify the relation 

between age and temporal acuity, individual JND data points were fit with a linear 

regression model (data are not shown in the figures). A significant regression was found for 

the visuorimotor TOJ (R2 = 0.21, p < 0.01), audiovisual TOJ (R2 = 0.17, p < 0.01), and 
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visual TOJ (R2 = .16, p < 0.01) tasks suggesting reduced temporal sensitivity with increasing 

age for all TOJ contexts.

Figure 2B shows the effect of age on perceptual synchrony for each TOJ task. PSS values 

were first estimated for each individual and then averaged across individuals for each group. 

In the audiovisual task, group average PSS values were 40.5 ± 26.8 ms for young adults, 

41.3 ± 15.1 ms for middle-aged adults, and 25.0 ± 18.2 ms for older adults. In the 

visuomotor task, PSS values were 2.2 ± 9.5 ms for young adults, 1.3 ± 9.9 ms for middle-

aged adults, and −12.3 ± 12.5 ms for older adults. In the visual task, average PSS values 

were 3.2 ± 4.1 ms for young adults, 4.2 ± 4.1 ms for middle-aged adults, and 16.2 ± 7.6 ms 

for older adults. A repeated measure ANOVA (within factor: task, between factor: age) 

showed a significant main effect of task (F(2,82) = 6.253, p < 0.01; partial ƞ2 = 0.13) but no 

significant main effect of age (F(2,41) = 0.174, p = .841; partial ƞ2 = 0.01) or any significant 

interaction between task and age (F(4,82) = 0.488, p = .744; partial ƞ2 = 0.02). Post-hoc 

comparisons with Bonferroni adjustments revealed that audiovisual PSS estimates were 

significantly larger than visuomotor (p <0.05) but not visual PSS values (p = 0.071) and that 

there was no difference between PSS values from visuomotor and visual tasks (p = 0.503). 

We computed a Bayes Factor to assess the likelihood of the null hypothesis that age did not 

have an effect on PSS given the data. A Bayes Factor of 8.80 provided substantial evidence 

in support of the null hypothesis that age did not have an effect on perceptual synchrony.

In addition, a linear regression model was applied to the data to analyze changes in the PSS 

based on age (data not shown). No significant correlation occurred for the visuomotor TOJ 

(R2 = 0.031, p = .248), audiovisual TOJ (R2 = 0.005, p = .655), or the visual TOJ (R2 = 

0.057, p = .116), indicating that PSS estimates remain stable across the age groups tested. 

However, Bayes factors were estimated from the data comparing the null hypothesis (age 

cannot predict PSS) to the alternative (age can predict PSS) for the visuomotor (BF = 1.94), 

audiovisual (BF =3.08) and visual (BF = 1.21) tasks. This subsequent analysis confers weak 

support for both the null and alternative models indicating that the current assessment may 

not be sensitive enough to examine the relationship between age and PSS, especially for the 

visuomotor and visual only tasks.

In Figure 3 we reported associations between JND measures estimated from the three 

different tasks. Individual data were fitted using a linear regression model. A significant, 

though weak, positive linear relationship was found between the audiovisual and the 

visuomotor JND values (R2 = 0.114, p < 0.05, Fig. 3A), suggesting that individuals who 

show a large window of audiovisual integration also tend to show a large window of 

visuomotor integration. Similarly, we found a significant, positive linear relation between 

visual and audiovisual individual JNDs (R2 = 0.348, p < 0.0001, Fig. 3B) and between 

visual and visuomotor JND values (R2 = 0.111, p < 0.05, Fig. 3C), indicating that poor 

temporal sensitivity correlates at least weakly across all sensory conditions.

Figure 4 shows the relationships between perceptual synchrony, measured through the PSS 

in the audiovisual, visuomotor and visual tasks. A linear regression model did not reveal any 

significant relationship between the audiovisual and visuomotor PSS (R2 = 0.001, p = .867, 

Fig. 4A), between the visual and audiovisual PSS (R2 < 0.001, p = .998, Fig. 4B), or 
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between the visual and visuomotor PSS (R2 = 0.005, p = .639, Fig. 4C), suggesting that 

perceptual synchrony is context-dependent. The data were also examined by estimating a 

Bayes factor comparing the data under the null hypothesis, wherein the PSS from one task 

did not predict the PSS from another task, and the alternative hypothesis, where the PSS 

from one task did predict the PSS from another task. Estimated Bayes factors (null/

alternative) suggest that the data favors the null hypothesis for audiovisual and visuomotor 

(BF = 3.32), for visual and audiovisual (BF = 3.37), and for visual and visuomotor (BF = 

3.10) PSS estimates. In other words, under the current data PSS estimates are more than 3 

times more likely to not correlate between any two of the tasks we tested.

Discussion

Reliable multisensory processing is important for several tasks such as speech recognition 

and comprehension, and illustrates the importance of multisensory integration in everyday 

functions (Stevenson et al., 2015; Gordon-Salant et al., 2017). Heightened temporal 

sensitivity increases the likelihood of accurately binding and segregating information from 

the same or different sources, respectively. Conversely, reduced sensitivity in temporal 

integration can lead to significant distortions in global perceptual estimates and greatly 

impact quality of life. Findings from this study show that the ability to temporally segregate/

integrate sensory and motor signals significantly declines with age. In contrast, perceptual 

synchrony is not affected by age in any task assessed, indicating selective sparing of context-

specific processes. These results suggest that while integration likely represents a global 

mechanism guiding general sensitivity in temporal perception, perceptual synchrony reflects 

context-dependent biases based on unique properties of the stimulus that remain intact 

throughout the lifespan.

Since age significantly impacts sensory perception (Howarth and Shone, 2006; Werner et al., 
2010; Owsley, 2011; Andersen, 2012), the reported deficits may be partially due to declines 

in unisensory processing (Ostroff et al., 2003; Čeponienė et al., 2008). With increasing age, 

the sensory organs responsible for encoding auditory and visual information deteriorate as 

do structures within the central nervous system that process sensory events (Goodin et al., 
1978; Celesia et al., 1987; Ostroff et al., 2003; Lemaître et al., 2005; Werner et al., 2010; 

Kraus and Anderson, 2013). In order to compensate for slower processing times, the 

temporal constraints guiding the integration or segregation of information must be more 

flexible. Therefore, stimuli separated by large temporal delays may become perceptually 

bound in an older adult, leading to poorer temporal sensitivity (Diederich et al., 2008; 

Mozolic et al., 2012). In addition, structural and functional alterations associated with aging 

result in noisy neural signals and degraded perceptual estimates. This may facilitate an 

increased benefit of multisensory information, as predicted by the principle of inverse 

effectiveness where the strength of multisensory integration increases when unisensory 

signals are less reliable (Meredith and Stein, 1983, 1986). Indeed, older adults have 

exhibited greater multisensory behavioral gains than young adults (Laurienti et al., 2006; 

Peiffer et al., 2007). However, greater reliance on multiple sensory signals instead of 

degraded unitary signals could make older adults more susceptible to sensory integration 

despite extreme temporal delays, resulting in reduced sensitivity.
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Because the age-related sensitivity deficits shown here are irrespective of task-specific 

contexts, there is likely a general impairment affecting an all-inclusive process rather than 

selective targeting of multiple mechanisms (Mozolic et al., 2012). A likely candidate is the 

cortico-striatal dopaminergic system that enables general time perception (Meck, 2006b, 

2006a; Agostino and Cheng, 2016; Turgeon et al., 2016). Neurological disorders affecting 

dopaminergic activity cause deficits in time perception. For example, individuals affected 

with Parkinson’s disease show poor temporal estimation in both audition and vision (Pastor 

et al., 1992; Smith et al., 2007; Allman and Meck, 2012), supporting the involvement of the 

dopaminergic system in a global timing mechanism. Moreover, the striatum, a subcortical 

nucleus that receives dopaminergic inputs from the midbrain, also exhibits heightened 

susceptibility to age as older adults show significant dopamine depletion in this region (Li 

and Backman, 2010). Therefore, aging may impact the dopaminergic circuity and have 

consequent global effects on temporal sensitivity. The impairment in this central timing 

mechanism might be a plausible explanation for the widespread discrepancy reported here 

and for the significant correlations between JND values from all 3 conditions observed in the 

current study.

Another possible cause of global impairments in older adults is a reduction in GABA 

concentration, the main inhibitory neurotransmitter, as previously reported for this 

population (Leventhal et al., 2003; Betts et al., 2005; Pinto et al., 2010; Porges et al., 2017). 

Altered lateral inhibition can lead to a noisy neural network that produces unreliable signals, 

impacting resolution and impairing perceptual sensitivity. Indeed, decreased GABA levels 

and imbalanced excitatory/inhibitory (E/I) connections can result in general cognitive 

slowing and less efficient temporal integration (Leventhal et al., 2003; Hoshino, 2014; van 

Atteveldt et al., 2014; Porges et al., 2017). GABAergic activity and E/I balance also 

contribute to the generation and synchronization of gamma band oscillations (Bartos et al., 
2007; Atallah and Scanziani, 2009; Isaacson and Scanziani, 2011; Balz et al., 2016). This 

process facilitates integration through phase coherence of groups of neurons as described in 

both multisensory and sensorimotor contexts (Senkowski et al., 2008; Atallah and Scanziani, 

2009). However gamma band synchronization is reduced in older adults (Goossens et al., 
2016). Therefore, altered GABA-mediated transmission and imbalanced E/I connections can 

diminish the efficiency of multisensory integration (Hoshino, 2014) and may play a role in 

the poor sensitivity found in older adults from the present study. In addition, reductions to 

GABAergic activity are shown to gradually occur over the lifespan (Pinto et al., 2010), 

beginning around 30 years of age. This parallels the gradual reduction of temporal 

sensitivities shown across the 3 age groups in the current study.

So far we have discussed how changes in low level processing may be responsible for the 

temporal impairments we found in the older population. However, changes in higher 

cognitive function might have similarly induced these temporal deficits. For example, the 

ability to divide attention across multiple modalities is a crucial factor for efficient and 

reliable integration (Alsius et al., 2005; Talsma et al., 2006; Mozolic et al., 2007; Vercillo 

and Gori, 2015; Macaluso et al., 2016). Yet older adults show diminished top-down 

attentional control and increased susceptibility to distracting information (Dywan et al., 
1998; Alain and Woods, 1999; Andrés et al., 2006; Glisky, 2007). Unlike young adults, older 

adults also show deficits in selective attention during the presentation of audiovisual stimuli 
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(Hugenschmidt et al., 2009). While young adults are able to selectively attend to one 

modality leading to diminished integration, older adults continue to integrate the two signals 

due to a reduced ability to control and direct attention toward specific stimuli 

(Hugenschmidt et al., 2009). Another cognitive factor that may affect temporal sensitivity is 

fatigue. Previous studies show that older adults are more susceptible to mental fatigue with 

increased time on an experimental task leading to reduced attentional control and increased 

variability in responses (Boksem et al., 2006; Boksem and Tops, 2008; Wascher and 

Getzmann, 2014). Age-related degeneration of working memory capacity (Craik and 

Salthouse, 2000) may also account for the temporal impairments reported here as working 

memory capacity is associated with enhanced abilities to recall temporal relations between 

events and with greater temporal resolution (Unsworth and Engle, 2007; Broadway and 

Engle, 2011; Bartholomew et al., 2015).

Temporal judgments are subjective, with estimates based on prior experiences and individual 

percepts reflected in an internal decision criteria (Treisman, 1984; Sperling, 2008; Yarrow et 

al., 2011). For instance, a detected temporal delay must be compared to an internal criterion 

(i.e. a sound is synchronous to a flash) to determine if the delay surpassed the criterion and a 

response of flash first can be made or vice versa (Yarrow et al., 2011, 2016). Therefore, a 

possible explanation of our results may be a change in the response criterion inherent to TOJ 

tasks. Older adults often adopt a more conservative decision strategy (Ratcliff et al., 2006) 

and don’t update their response criterion in a similar manner as young adults due to reduced 

perceptual reliability (Brown and Steyvers, 2005; Rakitin and Malapani, 2008; Solomon et 
al., 2012). However, changes to decision criteria cannot be the main driver of age-related 

changes in temporal processing reported in this study. A shift in response criterion would 

likely induce a shift in the PSS, not necessarily a reduction of JND values as reported (Di 

Luca et al., 2009; van Eijk et al., 2010). Future studies are necessary to understand the 

contributions from change in neural processing times and change in response criteria that 

can decrease temporal precision over the course of aging.

The variety of global deleterious effects resulting from aging likely also have consequences 

on the sensitivity for temporal integration, as discussed above. In contrast, there was no 

evidence for an age-related effect on perceptual synchrony providing support for distinct 

mechanisms. One hypothesis predicting how the brain adjusts for natural temporal 

discrepancies in order to perceive synchrony is temporal renormalization. Under this 

concept, the timing of an event is defined as the average across multiple neural timings from 

different modalities and stimuli (Freeman et al., 2013). If a particular neural timing changes, 

for instance a dramatic reduction in processing speed in one modality, then the average 

timing reflects this change with a resultant perceptual shift in observer bias. For example, in 

a unique case study of a patient presenting with a brain lesion along the olivo-collicular 

pathway likely affecting early processing of auditory information, the individual’s 

perceptual synchrony showed a change toward audio-leading bias however audiovisual 

integration was unaffected (Freeman et al., 2013). Assuming that normal aging affects all 

sensory and motor systems fairly equally (Eckert, 2011; Harris et al., 2011), the average 

neural timing across different modalities and stimuli would remain relatively stable leading 

to preservation of observer bias.
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Unlike the presumed supramodal processes underlying integration, perceptual synchrony 

appears to depend on rather specific contextual factors. The concept of synchrony is inherent 

to an individual’s experience of the world as coherent and is heavily biased toward the 

natural asynchronies of the stimuli themselves (Aschersleben and Prinz, 1995). For instance, 

the consistent visual-lead bias in terms of audiovisual events reflects the natural difference in 

propagation times between sound and light (Keetels and Vroomen, 2012). In addition, we 

often assume voluntary motor actions directly produce consequential sensory events leading 

to a perceptual anticipation of sensory signals for sensorimotor binding. The properties of 

the stimuli also significantly impact observer bias of simultaneity, for example semantically 

congruent audiovisual speech stimuli shifts PSS estimates in temporal judgments (Vatakis et 
al., 2008). These variable scenarios reflect biases developed specifically to the unique 

properties of those events, not some shared property that can be reflected across stimuli, 

supporting the notion that observer bias is derived from stimulus-specific and content-

dependent properties.

Despite the specific deficits acquired with aging, the brain has a unique capacity to adjust 

and recalibrate in order to stabilize perception. For instance, color perception remains stable 

across the lifespan despite a brunescent lens and functional changes along the various cone 

pathways (Webster et al., 2005; Webster, 2015), similar to maintenance of audiovisual 

synchrony perception in older adults with hearing loss (Tye-Murray et al., 2007). Following 

this explanation, maintenance of PSS measures across age groups may reflect a general 

ability to recalibrate for relative delays between sensory systems. While various perceptual 

functions or modalities may be affected by aging to different degrees resulting in a nosier, 

less sensitive system, a long-term adaptive process may be responsible for the perceptual 

constancy found for PSS estimates reflecting differential effects of age on temporal 

integration. However, while the visual system was a major interest in the present study, the 

constant use of visual stimuli in all 3 tasks may present a confound. In addition, visual 

latencies in the sensorimotor task were not constant across experimental blocks or 

participants due to the method of delivering a visual latency based on participant’s reaction 

time measured prior to experimentation. With these various limitations, our results should be 

interpreted with some caution.

Understanding the specific alterations to multisensory and sensorimotor integration that 

occur with aging is necessary for the development and application of non-invasive strategies 

benefitting overall daily function of the older population. Indeed, deficits in both the 

audiovisual (Setti et al., 2011; Merriman et al., 2015) and sensorimotor domain (Tinetti et 
al., 1988; Maki and McIlroy, 1996) have been related to balance impairments and increased 

risk for falls in older adults. Results reported here show that aging effects integration but not 

perceptual synchrony, suggesting discreet processes guiding these two aspects of temporal 

perception. While various global mechanisms are impacted by aging leading to greater 

variability in processing external information and reduced sensitivity, the subjective 

judgments of these events remain intact in order to maintain consistency in synchronous 

perception. Future studies are necessary to parse out the specific mechanisms underlying 

each process to further elucidate how the aging process affects these variable aspects and 

develop more targeted approaches to enhance daily function in the older adult.
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Figure 1. Experimental designs.
Panel A shows the experimental set-up used for all three tasks. The speaker used to present 

auditory cues was located in a central location relative to the observer and display. The 

fixation cross and visual stimulus were presented in the center of the screen for the 

audiovisual and visuomotor tasks while the two visual stimuli were presented peripheral to 

the fixation cross in the visual task. The time-course of the audiovisual TOJ task is shown in 

panel B. After 500 ms, the fixation cross disappeared to signal the start of the trial. During 

each trial a puretone auditory stimulus (As) and a visual stimulus (Vs) appeared on the 

screen at variable temporal delays (SOAs). Panel C shows the time-course of the visuomotor 

task. Participants were asked to make a keypress (Kp) immediately following the fixation 

cross’s disappearance. A visual stimulus (Vs) also appeared on the screen following the 

cross at variable temporal delays and participants then judged the temporal order. For the 

visual task (panel D), a visual stimulus flashed on the far right and on the far left of the 

fixation cross at variable asynchronies.. The fixation cross remained on the screen 

throughout the trial.
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Figure 2. Increased JND, not PSS, values for older adults across tasks.
Older adults (light grey bars) demonstrated significantly higher temporal order thresholds 

(top row) for the audiovisual (left panel), visuomotor (middle panel), and visual (right panel) 

TOJ tasks as compared to young (black bars) and middle-aged adults (dark grey bars). There 

was no difference in PSS measures (bottom row) across age groups.
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Figure 3. Significant relationships between JND values from all 3 tasks.
Simple linear regression models were fit to individual JND data from the audiovisual and 

visuomotor (left panel), the visual and audiovisual (middle panel), and the visual and 

visuomotor (right panel) conditions revealing positive associations between all tasks tested.
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Figure 4. Distinct synchronization processes for unisensory, multisensory, and sensorimotor 
frameworks.
Simple linear regression models were fit to individual PSS data from the audiovisual and 

visuomotor (left panel), the visual and audiovisual (middle panel), and the visual and 

visuomotor (right panel) conditions revealing no significant associations.
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