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The average color in a scene is a potentially important cue to the illuminant and thus for color constancy, but it

remains unknown how well and in what ways observers can estimate the mean chromaticity. We examined this

by measuring the variability in “achromatic” settings for stimuli composed of different distributions of colors
with varying contrast ranges along the luminance, SvsLM, and LvsM cardinal axes. Observers adjusted the mean
chromaticity of the palette to set the average to gray. Variability in the settings increased as chromatic contrast or
(to alesser extent) luminance contrast increased. Signals along the cardinal axes are relatively independent in many

detection and discrimination tasks, but showed strong interference in the white estimates. This “cross-masking”

and the effects of chromatic variance in general may occur because observers cannot explicitly perceive or represent
the mean of a set of qualitatively different hues (e.g., that red and green hues average to gray), and thus may infer the

mean only indirectly (e.g., from the relative saturation of different hues).

https://doi.org/10.1364/JOSAA.382316
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1. INTRODUCTION

The stimulus that appears gray or achromatic is fundamental to
color vision, for it is the norm relative to which all other colors
are encoded [by the direction (hue) or distance (saturation)
from gray]. Many studies have examined achromatic settings
and how they depend on factors such as visual eccentricity
[1,2], the observer’s age [3,4], the state of adaptation [5], or
the measurement procedures [6]. In general, chromatic sensi-
tivity is highest around the white point relative to other colors,
consistent with the predictions for contrast masking in which
white corresponds to zero contrast [7-9]. Achromatic settings
have also played a central role in color constancy, as a measure
of how the perceived colors of objects depend on the spectral
characteristics of the illuminant (e.g., [10]). White settings
tend to be more variable along bluish—yellowish directions
compared to reddish—greenish axes [3,6,11]. This blue—yellow
bias has been attributed to weaker sensitivity or greater tolerance
for variations in natural daylight spectra, which vary along a
blue-yellow axis [12-16].

Most studies of achromatic settings examine how or how well
observers can judge the appearance of a single surface. However,
natural scenes often include a wide gamut of colors, and can
have a strong bias in the average chromaticity [17-21]. It is thus
important to understand the extent to which an observer can
estimate the average color of such scenes [22]. For example,
this would be important for discounting the illuminant to
achieve color constancy, assuming a gray world or neutral set of
reflectances [23,24]. The ability to extract the mean of a set of
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elements has been repeatedly demonstrated in the context of
“ensemble coding” or “summary statistics.” Ensemble coding
is motivated by the observation that the visual system is often
insensitive to the individual details comprising a scene, yet
highly sensitive to the global statistics of these details such as
their mean and variance (see [25] for a review). This finding
has been demonstrated for a wide variety of visual attributes
including size [26], orientation [27], and motion [28]. It has
also been found for high-level features such as facial expressions
[29] and direction of gaze [30]. The ability to extract the mean
of an ensemble has also been extended to audition, for example,
to represent the average of a set of tones [31,32]. The ubiquitous
nature of averaging in sensory processing suggests it confers fun-
damental advantages in perception, and in particular supports
efficient representations of image properties [25,33].

A number of studies have examined ensemble coding in
color vision (e.g., [34—38]). These have generally shown robust
averaging for nearby colors, and weaker sensitivity as the color
variance increases, but have not revealed how this averaging is
related to basic mechanisms of color coding. Here we system-
atically probed how averaging and white percepts depend on
different cardinal directions in color space [39], and the inter-
actions between these directions. Specifically, our goal was to
assess the relative independence of the cardinal chromatic axes
in a color averaging task, and explore if the sensitivity of white
settings for stimuli having different chromatic contrasts was
separable based on these cardinal directions.
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2. METHODS
A. Participants

Participants included author SS and 12 students at the
University of Nevada, Reno, who were unaware of the specific
aims of the study, with different observers participating in dif-
ferent subsets of the experiments. All observers had normal color
vision as assessed by the Cambridge Color Test [40] and had
normal or corrected-to-normal visual acuity. The studies fol-
lowed protocols consistent with the Declaration of Helsinki and
were approved by University of Nevada, Reno’s Institutional
Review Board, and participation was with informed consent.

B. Stimuli

Stimuli were displayed on a calibrated NEC color monitor con-
trolled by a Cambridge Research Systems ViSaGe graphics card.
The gun luminances were linearized through calibration tables
measured with a PhotoResearch PR 655 spectroradiometer.
The test stimulus was composed of a 15 x 15 square array of
color patches. Each uniform patch subtended 0.5 deg at the
110 cm viewing distance, and the array was shown centered in
the 800 pixels by 600 pixels background of the monitor.

The test array and background (except where noted oth-
erwise) had the same average luminance (30 cd/ m?) and an
achromatic chromaticity (CIE 1931 x,y: 0.31, 0.316) equiv-
alent to the chromaticity of Illuminant C. Luminance in the
display was defined photometrically and not calibrated for
individual observers. The colors of the individual array ele-
ments were specified by their LvsM, SvsLM, and luminance
contrast relative to the mean, with contrasts scaled according
to a version of the Macleod—Boynton [41] (MacLeod and
Boynton 1979) color space (see Fig. 1). The scaling was cho-
sen to roughly equate sensitivity for the cardinal axes based on
previous studies [42]:

LvsM contrast = (rp,, — 0.6568) x 2754,
SvsLM contrast = (b, — 0.01825) x 4099,

LUMcontrast = (Lum — 30) x 3.33,

where 1, and by are the chromaticity coordinates of the
stimuli in the MacLeod-Boynton diagram, and the constants
0.6568, 0.01825 are the MacLeod—Boynton coordinates of
the background. Lum is the luminance of the element, with the
contrasts scaled to range from —100 to 100. For a given contrast
level (e.g., 30), the contrasts of the 225 elements were chosen
to uniformly and equally sample 225 values along the contrast
range (e.g., from —30 to 30), with the spatial locations of the
contrast levels randomized. The color of each patch displayed
the combination of the randomly assigned contrasts for the
three cardinal axes. Different conditions varied in (1) the con-
trast range of the elements, (2) the chromatic axis used to define
the array, or (3) the type of background. The specific conditions
are noted for each set of results below.

C. Procedure

Observers viewed the display binocularly in an otherwise dark
room and fixation was not controlled. During an experimental
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Fig. 1. Axes for chromatic contrast variations in the stimuli. The
LvsM and SvsLM axes are the cardinal directions of color space, and
correspond to angles of 0—180 and 90-270 deg. The —45 and 445
axes correspond to hue angles intermediate to the cardinal axes (based
on the scaling used for the space).

session they first adapted to the gray background for 15 s, and
then were shown the test palette for 500 ms alternated with
1500 m of the background. The mean of the array was initially
set to a random level, with the fixed range of chromaticities
varied relative to the mean. For example, if the specified con-
trast was 30 and the randomly selected mean was 10, then the
elements ranged in contrast from —20 to 40. Observers were
instructed to adjust the mean chromaticity of the array until the
palette appeared unbiased (i.e., with a mean equal to gray), using
two pairs of buttons on a handheld keypad. The two pairs sep-
arately varied the mean value of the array along two orthogonal
axes LvsM and SvsLM or —45 and +45. For example, the bot-
tom panel of Fig. 2 shows an array before or after adjusting the
palette with a fixed contrast along the LvsM axis and a mean bias
in both the LvsM and SvsLM coordinates. The task required
adjusting the mean along both axes so that the colors appeared
centered on the achromatic point. The mean luminance and
luminance contrast remained fixed throughoutand could not be
adjusted. The stimulus repeated until a setting was selected by
a button press, at which point the mean (LvsM and SvsLM, or
—45 and +45) values were recorded and the program advanced
to the next stimulus. During a session participants were shown
different color palettes (corresponding to different chromatic
axes and to different chromatic and luminance contrasts), each
shown 10 times in random order. Two separate sessions were
completed for each condition resulting in a total of 20 settings
per stimulus for each observer. The standard deviation of these
20 settings was used as a measure of the sensitivity to a color bias
in the arrays, and was calculated separately for each adjustment
axis (e.g., for the settings along the LvsM or SvsLM axis). The
results reported are based on the standard deviations averaged
across the observers for each condition. All comparisons are
between conditions that were assessed during the same sessions
and within the same observers, and are based on repeated-
measures ANOVAs comparing the magnitude of the errors
across conditions.
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Fig.2. Top: examples of unbiased stimulus palettes with a fixed luminance contrast and no chromatic contrast (monochrome), or a fixed range of
chromatic contrast along the LvsM, SvsLM, —45, or +45 deg axis. In the experiment each array was chromatically biased by adding a random uni-
form mean chromaticity to the palette, and observers adjusted this mean along the stimulus axis and the orthogonal axis until the palette appeared
unbiased. Bottom: example in which the stimulus had a fixed range of chromatic variation along the horizontal LvsM axis (white bar) but with an
added random mean shift along both the LvsM and SvsLM axes (reddish purple circle). The mean was adjusted along both the LvsM nd SvsLM axes

so that the mean appeared achromatic (gray circle).

3. RESULTS

The general aim of our study was to assess sensitivity to the
“white balance” of color arrays and how this depends on the
range of color and luminance in the arrays. In all cases we
assessed this by asking observers to adjust the mean chromaticity
of the palettes so that the mean was achromatic, and used the
variance in the repeated estimates as a measure of sensitivity. The
stimuli varied in luminance contrast, chromatic contrast, and
the axis of the chromatic contrast. In further experiments we
also examined the effects of the backgrounds on which the arrays
were presented. In the following sections we consider the effects
of each of these factors.

A. Effects of Luminance Contrast

In the first case we examined the achromatic settings in palettes
that had uniform (zero contrast) chromaticity, but differed in
the level of luminance contrast. The luminance contrast was
fixed at 0, 30, or 50, and observers adjusted the chromaticity
of the palettes until they appeared gray. Figure 3 shows plots of
the resulting achromatic settings, again for palettes that had a
range of luminance levels but were a uniform color (i.e., zero
chromatic variance). In this and subsequent plots, the symbols
show the mean standard deviation of the settings [averaged
across the 20 trials and eight observers (left), four observers
(right)] as function of the array contrast, and the different lines
correspond to the settings along the two chromatic axes. The
left panel shows settings when observers adjusted the LvsM and
SvsLM levels, while the right panel was for a case (discussed
further below) where the adjustment was instead along the —45
and +45 deg axes intermediate to the cardinal axes. In each
panel the leftmost points correspond to a uniform square. For
this condition observers simply had to adjust the square until it

was indistinguishable from the background, and the variance
in the settings is near the nominal thresholds for discriminating
a color change along either axis. It should thus be noted that
in this case observers were not necessarily judging whether the
square appeared achromatic since they may have simply been
matching the background. However, a discriminable difference
from a gray background at equiluminance does typically appear
chromatic at the detection threshold [43,44].

Surprisingly, variance in the achromatic settings was
increased when luminance contrast was added to the array.
That is, even though the arrays remained chromatically uni-
form, judging the color was more difficult when the elements
randomly varied in luminance. These effects were observed both
for the mean settings as well as the settings for individual observ-
ers. Thus the increased variance is not simply because observers
started to reliably differ in their chosen achromatic points, but
because each observer was less reliable in their settings. A two-
way ANOVA [luminance contrast (0 versus 30 versus 50) versus
response axis (LM versus S)] revealed a main effect of luminance
contrast, but no main effect of response axis or a significant
interaction between the groups. Post hoc comparisons showed
that the difference in SD of white settings was between 0 versus
50 contrast levels (p = 0.013). A similar trend is apparent in the
blue—yellow settings, though in this case the effect of luminance
contrast did not reach significance.

B. Effects of Chromatic Contrast: Cardinal Axes

The next set of conditions varied the chromatic contrast along
the LvsM or SvsLM axes, with contrast along one axis fixed at
0, 30, or 50 and the other fixed at 0. Because of the effects of
luminance variations noted above, the settings were also made
for either 0 or 30 luminance contrast, for a total of 10 unique
conditions. Examples of the palettes and the settings are shown
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Standard deviation of the achromatic settings for stimuli with chromatic contrast along the LvsM axis (left) or SvsLM axis (right), and with

a luminance contrast of 30 (top) or 0 (bottom). Points plot the mean and standard error across observers for the settings along the LvsM axis (solid

lines) or SvsLM axis (dashed lines).

in Fig. 4. The leftmost points replicate the previous results
for luminance contrast, with larger standard deviations in the
settings when luminance contrast was added to the uniform
chromatic array. For both axes, the variance in the settings also
increased with increasing chromatic contrast. Importantly, this
effect was similar whether the stimulus variance was along or
orthogonal to the axis of the judgment. That is, the uncertainty
in the LvsM achromatic setting was increased in a similar way
whether the stimulus contrast was increased along the LvsM
axis or the SvsLM axis. Finally, the results suggest potential
differences in the magnitude of the effect along each axis.

However, this difference could reflect a difference in how
contrasts along the two axes were scaled.

These effects were formally assessed with a three-way
RMANOVA (axis of variance by contrast level by response axis;
separately for each luminance contrast), which showed signifi-
cant main effects for all factors [variance axis, F(1, 7) = 7.379,
p=0.005; contrast level, F(2, 14) =25.076, p < 0.001;
response axis, F(1,7) =15.95, p=0.005]. There was also a
significant interaction between the response axis and contrast
level [F(2, 14) = 6.329, p = 0.011]. A post hoc analysis of pair-
wise comparisons between the contrast levels showed that the
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with a luminance contrast of 30 (top) or 0 (bottom). Points plot the mean and standard error across observers for the settings along the —45 deg axis
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difference in settings was significant between the 0 versus 30
(p=0.004), and 0 versus 50 contrast levels (p =10.003). We
also conducted separate three-way RMANOVAs for the LvsM
and SvsLM arrays (luminance contrast by chromatic contrast
by response axis). For LvsM, there was a main effect only for
chromatic contrast [F(2, 14) =21.281, p < 0.001]. Post hoc
pairwise comparisons between the contrast levels showed that
the differences between all the chromatic contrast levels were
significant (0 versus 30, p=0.008; 0 versus 50, p = 0.006;
30 versus 50, p=0.034). Similarly, for the SvsLM arrays
showed a main effect of chromatic contrast [F(2, 14) =27.18,
p < 0.001] with significant differences between the 0 versus 30
(0.002) and 0 versus 50 (p = 0.002) contrast levels.

C. Effects of Chromatic Contrast: Intermediate
Chromatic Axes

As noted, a number of previous studies have shown that color
discrimination and achromatic settings tend to be less reliable
along the “blue—yellow” dimension of color [6,11]. Again, this
effect has been attributed to the greater variance in natural light-
ing along the blue—yellow axis, which might reduce sensitivity
to blue—yellow variations. We assessed whether a similar bias
would occur for achromatic settings in the variegated color
distributions. For this we repeated the same measurements, but
for stimuli that were rotated 45 deg in the chromatic plane. One
of these axes corresponded to a bluish to yellowish/orange hue
variation (thus this axis was close to but did not isolate a pure
blue—yellow variation). The second, +45 deg axis corresponded

to hues that varied from reddish—purple to green. Examples of
the palettes are shown in Fig. 5. Unlike the preceding condi-
tions, note that any differences in these stimuli cannot result
from differences in how the LvsM and SvsLM axes are scaled,
for both axes include the same LvsM and SvsLM contrasts,
combined in opposite phase.

Here again, variability in the settings increased with increas-
ing chromatic contrast (Fig. 5). Surprisingly, for our conditions
the achromatic settings were, if anything, more reliable along
the —45 deg (bluish-yellowish) axis when the arrays were
monochromatic. Moreover, when the stimulus varied along
the +45 deg, settings also tended to be less noisy for this axis.
However, the converse was not observed for stimulus variations
along the 445 reddish—greenish axis. Thus, in general, our
results did not reveal a weaker sensitivity to the —45 degaxis, but
again confirmed that achromatic settings became less reliable
as the stimulus variance increased. A three-way RMANOVA
(stimulus axis by contrast level by response axis; for each lumi-
nance contrast) showed that there was a main effect of the
response axis [F(1, 3) = 17.617, p = 0.025] and main effect of
the contrast level [F(2, 6) = 19.088, p = 0.003], but no effect
of the stimulus color axis and no interaction between the factors.
Separate analyses of the —45 and 445 stimuli (comparing lumi-
nance level by chromatic contrast by response axis) showed a
significant main effect for chromatic contrast [F (2, 6) = 14.36,
p =0.005] with the difference between 0 versus 50 being sig-
nificant (p = 0.038), and no main effect of luminance contrast.
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Effect of the background on the settings. Each panel plots the standard deviation in the achromatic settings for a given stimulus array shown

onagray background, black background, or a gray background interleaved with the array elements. The three panels are for stimulus arrays with lumi-
nance contrast but no chromatic contrast (left), luminance contrast and LvM chromatic contrast (middle), or luminance contrast and SvsLM contrast
(right). Points plot the mean and standard error across the observers for the adjustments along the LvsM (solid lines) and SvsLM (dashed lines) axes.

For the +45 stimulus dimension the main effects did not reach
significance.

D. Effects of the Background

In the final conditions we assessed the effect of the background
surrounding the arrays. As noted, in the preceding conditions
the background was maintained at the gray average of the arrays,
and thus provided a potential reference for setting the mean
chromaticity of the array. To remove this cue, we repeated the
settings for the cardinal axis contrasts, but on a black back-
ground. This increased the variability in the settings, although
notsignificantly (Fig. 6).

As a second manipulation we introduced a gap between each
element of the array. The gap subtended 0.5 deg by setting
alternate elements in the array to gray. An example of the array
is shown in Fig. 7. If the background served as a reference, then
the added gap might provide a stronger local cue to the average
chromaticity of the array. Alternatively, the gap might decrease
sensitivity because it removed the potential cue for a mean bias
in the color to reflect a uniform illuminant or transparent over-
lay. Instead, however, this condition did not alter the variability
in the white settings. These effects were confirmed using a three-
way ANOVA (axis of stimulus variation by background type by
response axis), which showed no main effects of the stimulus
[F(2, 10) =2.18, p =.164], or background [F(2, 10) =2.17,
p = 0.165], or response axis [F(1, 5) = 1.8, p = 0.238].

4. DISCUSSION

To summarize, achromatic settings in our stimuli were strongly
affected by the variance of the color distribution, becoming
more variable as the contrast of the distribution increased.
Surprisingly, this occurred even when the contrast in the dis-
tribution was along color directions that differed from the
chromatic axis along which observers judged the achromatic
balance. We consider the implications of these effects for how
and how well the visual system might encode and represent the
achromatic mean of a color distribution.
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Fig. 7. Example of the stimulus array with gaps between the
elements by setting alternate elements to gray.

As noted in the Introduction, the average chromaticity in
a scene can provide potential information about the illumi-
nant and thus could provide a powerful cue to color constancy,
though several authors have noted that its utility depends in part
on an unbiased distribution of reflectances (the “gray world”
assumption) [23,24]. Studies of color constancy have demon-
strated mechanisms that do respond to mean changes in the
stimulus. For example, the cones adapt to the time-averaged
signals they are exposed to and thus could adjust to the mean by
sampling the image with successive fixations [45,46]. However,
this adaptation should actually work against detecting an aver-
age color bias since it acts to remove this bias. A uniform shift in
the chromaticity (consistent with a global illuminant change)
can also be readily distinguished from random changes in the
colors within a distribution (consistent with local reflectance
changes) supporting relational color constancy [47]. In princi-
ple, mechanisms tuned to lower spatial frequencies could also
extract the average color of the scene by providing an estimate of
the illuminant [48].

As the latter example suggests, one strategy for estimating the
mean could be to attend to the low spatial frequency compo-
nent of the palettes, since this might correspond to the global
illumination. There is evidence that the visual system can form
layered representations of the illumination and surface color
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[49], and transparency effects have been widely studied [50].
Indeed, we specifically considered the possibility that observers
might perceive the palettes as unbiased but with an overlying
transparent layer of biased color. The control experiment with
gaps added between the palette elements was designed to reduce
this impression of transparency. However, this did not alter the
pattern of settings, arguing against this interpretation. While
we did not vary the element size, the perception of the mean
also depends strongly on this, since both optical and neural
blur would increasingly blend the perceived color as the spatial
frequency of the array increases [51,52], ultimately rendering
the mean easier to perceive.

Our principal finding is that the extraction of the average
is more difficult as the variance in the distribution increases.
One mechanism that could give rise to this effect for color is
contrast masking. Contrast discrimination thresholds increase
with increasing pedestal contrast for both luminance and chro-
matic contrast, consistent with a saturating nonlinearity in
the contrast response [7,8,53,54]. Thus the higher-variance
patterns might reduce sensitivity to a chromatic bias. Contrast-
dependent losses of sensitivity could also occur with contrast
adaptation, which produces stronger losses for higher adapting
contrasts [55]. Our stimuli involved brief and intermittent
presentations and thus limited but did not completely control
for potential adaptation effects.

However, a problem with both masking and adaptation
accounts is that both are strongly color-selective. That is, mask-
ing or adaptation along the LvsM axis strongly affects sensitivity
along the LvsM axis but not along the SvsLM axis or vice versa
[7,55-57]. Instead, we found pronounced “cross-axis” inter-
actions on the settings. Specifically, judging the LvsM balance
was affected in similar ways whether the color distribution
varied only along the LvsM axis or the SvsLM axis, and was also
affected even when the distribution varied only in luminance.
These cross-axis interactions argue against a simple nonline-
arity as the basis for the effects, and suggest they may reflect a
fundamentally different cause. Related to this, they may also
reflect a fundamentally different judgment. In masking studies
the task of the observers is to discriminate between two colors
or color distributions, without regard to their color appearance.
In contrast, our task required observers to directly judge the
appearance.

The focus on appearance rather than discrimination in our
task may make the achromatic settings more akin to ensemble
coding. As we noted, ensemble coding of the mean has been
demonstrated for a wide range of stimuli [25], and like our
color settings, becomes less precise with increasing variance in
the ensemble [35]. The mechanisms mediating this represen-
tation are not well understood. However, our results suggest
that the “averaging” does not occur independently within the
cardinal mechanisms underlying early post-receptoral color
coding, potentially pointing to higher stages of color processing,.
Moreover, we found little evidence for increased variability
along the blue—yellow or daylight locus characteristic of achro-
matic settings [6,11]. This may be because the noise introduced
by the color variations in the palette became more important
in limiting performance than the intrinsic sensitivity to white,
but at least for our limited settings this suggests that there do not
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appear to be any privileged axes for the averaging. How then was
an average estimated?

An important issue for understanding the underlying proc-
esses is whether the achromatic settings reflected an explicit
versus implicit percept of gray in the stimulus—that is whether
the visual system forms an actual representation of the mean of
the distribution or only infers it indirectly. In the case of color—
as well as potentially many of the other stimulus dimensions
studied in ensemble coding—this issue remains unresolved.
However, it is worth noting that it is not intuitive that the mean
of two complementary colors is gray; and in fact, when naive
observers are asked to select the complement of a color so that
the mean is gray, their settings are highly variable [58]. Thus, at
least anecdotally there seems to be little conscious access to the
mean. Moreover, it is possible that observers were not directly
sensing the mean hue, but instead gauging the relative contrast
of different hues. For example, the white point might have been
set by adjusting the reds and greens in the palette to appear equal
in saturation. In fact some observers reported this strategy after
testing. By this account, increasing the variance along other
color directions might make these relative saturation judgments
more difficult, because they introduced random hue variations
in the stimuli to be compared.

Finally, we note that our settings were confined to the percep-
tion of unbiased color distributions, and very different factors
may come into play when the average color of the stimulus
strongly deviates from white. For example, a number of studies
have found that in a variegated distribution, the more saturated
colors tend to dominate the average perceived color [59-61],
while lightness judgments are biased by the tendency to fixate
the lightest parts of objects [62]. This makes sense because in
scenes with lighting-induced variation the purest colors or
brightest elements may be interpreted as the most undiluted
sample of the surface color. However, such effects again point to
a role for higher-level inferences in the perception of the average
color.
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