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Abstract
Ensemble coding has been demonstrated for many attributes including color, but the metrics onwhich this coding is based remain
uncertain. We examined ensemble percepts for stimulus sets that varied in chromatic contrast between complementary hues, or
that varied in luminance contrast between increments and decrements, in both cases focusing on the ensemble percepts for the
neutral gray stimulus defining the category boundary. Each ensemble was composed of 16 circles with four contrast levels.
Observers saw the display for 0.5 s and then judged whether a target contrast was a member of the set. False alarms were high for
intermediate contrasts (within the range of the ensemble) and fell for higher or lower values. However, for ensembles with
complementary hues, gray was less likely to be reported as a member, even when it represented the mean chromaticity of the set.
When the settings were repeated for luminance contrast, false alarms for gray were higher and fell off more gradually for out-of-
range contrasts. This difference implies that opposite luminance polarities represent a more continuous perceptual dimension than
opponent-color variations, and that “gray” is a stronger category boundary for chromatic than luminance contrasts. For color, our
results suggest that ensemble percepts reflect pooling within rather than between large hue differences, perhaps because the visual
system represents hue differences more like qualitatively different categories than like quantitative differences within an under-
lying color “space.” The differences for luminance and color suggest more generally that ensemble coding for different visual
attributes might depend on different processes that in turn depend on the format of the visual representation.
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Introduction

In complex images, observers are often more sensitive to the
gist of the scene than to the individual items composing the
scene (Alvarez, 2011; Ariely, 2001; Whitney & Yamanashi
Leib, 2018). These summary percepts are called ensemble
coding, and have been demonstrated for a number of stimulus
features including features like size (Ariely, 2001), motion
(Watamaniuk & Duchon, 1992), and orientation (Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001), as well as
high-level attributes like faces (Elias, Dyer, & Sweeny,
2017; Haberman, Harp, & Whitney, 2009; Haberman &
Whitney, 2007), biological motion (Sweeny, Haroz, &
Whitney, 2013), or “lifelikeness” (Leib, Kosovicheva, &
Whitney, 2016). In each of these cases observers can readily

extract the average of the stimulus set even when the mean
level is not included as part of the set.

Here we examined ensemble coding in color vision.
Estimating the average chromaticity of the scene could play
an important role in processes like color constancy, for exam-
ple to estimate the color of a global illuminant. Previous stud-
ies have examined ensemble coding for nearby hues, and have
examined how sensitivity to the average varies with the range
of the color differences (Maule & Franklin, 2015; Webster,
Kay, & Webster, 2014) . Researchers have also tested for
categorical biases in ensemble processing, for example to
see if the perceived mean is shifted toward a category bound-
ary (Maule, Witzel, & Franklin, 2014), and have explored
how the ensemble percept depends on the number of elements
or variance of the set (Maule & Franklin, 2016; Rajendran &
Webster, 2020; Virtanen, Olkkonen, & Saarela, 2020). In gen-
eral, however, it remains unknown how and how well the
visual system could “compute” the average of a set of colors,
and what rules determine this averaging.

These previous studies focused primarily only on the di-
mension of hue, whereas color also varies along the dimen-
sions of saturation and lightness. Incorporating these dimen-
sions provides a richer test of the capacity for ensemble coding
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within color space. To explore the limits of this coding, we
examined stimulus sets that varied in chromatic (saturation) or
luminance (lightness) contrast relative to a neutral gray. Gray
is special in color processing for a number of reasons. First,
ensemble coding in color has generally not shown a categor-
ical effect (Maule et al., 2014). However, the categories tested
have been between adjacent hues (e.g., the blue-green bound-
ary) and thus vary in the relative proportions of two hues
(Chetverikov, Campana, & Kristjansson, 2017; Maule et al.,
2014; Maule & Franklin, 2015). Gray offers a stronger test of
categorical coding because transitions through the gray point
result in completely distinct complementary colors. Thus,
gray represents the strongest instantiation of a categorical col-
or boundary. Second, gray represents a null or norm in color
processing. Specifically, many stimulus dimensions (e.g., col-
or (Webster & Leonard, 2008), faces (Valentine, Lewis, &
Hills, 2015), blur (Elliott, Georgeson, & Webster, 2011), or
aspect ratio (Elias & Sweeny, 2020)) can be modelled in a
perceptual space in which individual variations of the stimulus
appear to vary relative to a unique norm. The norm itself
appears neutral, and the physical stimulus corresponding to
the normmay elicit a response null within the encoding mech-
anism. Thus the norm has been theorized to hold a special
perceptual status in visual coding (Webster, 2015). Third, it
is not clear how ensemble percepts would incorporate this
norm-based representation for color (or other norm-based
stimulus attributes). For example, suppose an observer is ex-
posed to a set of equal-contrast hues that uniformly sample the
color circle. What would the perceived average of this set be?
A metrical averaging of the chromaticities would yield an
average of zero and thus the neutral gray. Yet this average
would have a very different saturation than any of the color
elements, and it is possible that observers might instead assume
that the “average” had the same saturation as the elements, but
differed in hue. That is, observers might instead compute the
average independently for hue and saturation, and the nature of
the ensemble percepts might therefore point to the representation
of color at the level at which ensemble coding occurs. Finally,
color can vary not only in hue and saturation but also lightness. A
zero-contrast gray is also a categorical boundary for lightness
differences, since it demarcates the transition from increments
to decrements (white to black). However, it is not clear whether
the complements of light and dark behave in the sameway as, for
example, red and green.

To examine these questions we measured ensemble per-
cepts for sets composed of the same hue (e.g., different satu-
rations of red) versus different hues (ensembles with different
levels of both red and the complementary hue), or that varied
in chromatic contrast versus luminance contrast. Our aim was
to examine how the visual system summarizes information
within versus between different perceptual categories, and
the implications of this encoding for the perceptual represen-
tation of color.

Methods

Participants

A total of 30 unique observers participated in the study, with
different participants tested in different subsets of the condi-
tions, and some in more than one experiment (ten (six female)
total participants for Experiment 1; ten (nine female) for
Experiment 2; 18 (13 female) for Experiment 3). With the
exception of one participant, all were recruited from the
University of Nevada, Reno, student subject pool and were
naïve to the specific aims of the experiment. Participants had
normal color vision as assessed using the Cambridge Color
Test, and gave informed consent following the protocols ap-
proved by the university’s Institutional Review Board.

Stimuli

Stimuli were presented on a CRT monitor controlled by a
Cambridge Research Systems Visage graphics system.
Chromaticities and luminances on the display were calibrated
with a PR655 spectroradiometer. For all the conditions, en-
sembles were made of 16 randomly positioned circles ar-
ranged in a 4 x 4 irregular grid. At a testing distance of 100
cm, each circle subtended 2° and their centers were separated
by 4° with a random jitter of +0.5°. They were shown on a
neutral gray background with the chromaticity of Illuminant C
and a mean luminance of either 5 cd/m2 (Experiment 1) or 20
cd/m2 (Experiments 2 and 3). Throughout we use the term
“gray” to refer to this zero-contrast, achromatic background
level. Depending on the condition, the individual circles either
varied in their relative saturation or in their relative luminance,
which was defined photometrically and thus not adjusted for
individual observers. In the saturation condition, ensembles
varied along a randomly chosen hue axis or between comple-
mentary hues, while in the luminance-varying condition, on
each trial the elements had the same randomly chosen
chromaticity.

Experiments

We conducted three separate experiments that differed primar-
ily in how the color and luminance variations in the ensemble
elements were defined.

Experiment 1: Chromatic ensembles varied in a uniform color
space We used two different measures of chromatic contrast.
The first experiment was based on distances in the CIELAB
color space, which is designed to be perceptually uniform so
that equal distances in the space represent equal perceptual
differences. On each trial the stimuli had a fixed randomly
chosen hue angle within the space and equal steps of contrast
values ranging from up to -60 to 60 relative to the gray point,
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corresponding to the two complementary poles of the axis.
The magnitude of the differences along the axis corresponded
to Delta E values, where a Delta E of 1 corresponds roughly to
a just noticeable color difference. The luminance of the ele-
ments was 20 cd/m2 while the background was 5 cd/m2. This
was done so gray targets in the ensemble would also differ
from the background and thus could not be classified simply
on the basis of an “absence” of a stimulus.

Nine different ensembles were tested, composed of differ-
ent sets of contrasts. These are listed in Table 1 along with the
rationale for their sets. The first three had equal contrast along
the two complementary colors (two levels of each) and thus
had a mean of gray. These were included to examine whether
observers would misperceive the mean gray to be part of the
set even though it did not share the “hue” of any of the mem-
bers. They differed in the contrast range spanned by the en-
semble, and thus the distance from gray. Sets C4–C6 had a
higher contrast along a given hue angle compared to the com-
plement. These were used to test for possible interactions be-
tween hue and saturation. Finally, in C7–C9 the colors were
restricted to only one side of the chromatic axis and thus
contained only one hue, with (C7) or without (C8 and C9) a
gray element. These were used to test for potential within-hue
categorical effects. For all of the ensembles we measured re-
ported membership rates for the same nine targets that includ-
ed the four ensemble members and five non-members. In the
experiment the three subsets were run in separate sessions
with the ensemble order counterbalanced across participants.

Experiment 2: Chromatic ensembles varied in a cone-
opponent space Because CIELAB only approximates unifor-
mity, we also conducted a second experiment where the color
contrast steps were empirically determined to yield equal per-
ceptual differences. For this experiment the chromatic con-
trasts were based on a scaled version of the MacLeod-
Boynton chromaticity diagram (MacLeod & Boynton,
1979), which represents a plane of constant luminance defined

by opposing signals in the long- and medium-wavelength
cones (LvsM) or signals in the short-wavelength (S) cones
opposed by the L andM cones. Contrasts along each axis were
based on a scaled version of the space designed to roughly
equate threshold sensitivity along the LvsM and SvsLM car-
dinal axes, based on a previous study (Webster, Miyahara,
Malkoc, & Raker, 2000). The specific conversion between
the scaled space and the MB space is given by:

LvsM contrast ¼ rmb–0:6568ð Þ*2754
SvsLM contrast ¼ bmb–0:01825ð Þ*4099

where LvsM is the reported contrast level, and rmb and bmb

are the chromaticity coordinates of the stimuli in the
MacLeod-Boynton color space.

Within this space we empirically evaluated equal perceptual
contrast differences in order to try to equate the perceived dif-
ferences between adjacent contrast levels in the ensembles. To
do this we used a scaling task, in which contrast levels along the
LvsM axis of the space were displayed as a row of elements
with the same dimensions of the ensemble stimuli (Fig. 1). The
ends of this series were shown fixed at -120 and +120 chromat-
ic contrast and the center element at 0 contrast. Seven partici-
pants (four females) adjusted the remaining six intermediate
contrast levels until they appeared to increase uniformly in sat-
uration. Results were based on the mean of five repeated set-
tings per participant. Figure 1 shows that in the cone-opponent
space the required scaling is nonlinear, and is biased toward, but
less than, a constant ratio scaling. We therefore adopted con-
stant ratio steps to reassess the ensemble percepts.

For this experiment we also modified the stimuli so that the
elements had a luminance of 20 cd/m2 (equivalent to the back-
ground luminance) and thus differed from the background
only in chromatic contrast. So that they remained clearly vis-
ible from the equiluminant background, in this case the ele-
ments were delimited from the gray background by narrow
black borders.

Table 1 Chromatic (C) ensembles used for Experiment 1. Contrast magnitudes refer to the distance (Delta E) from gray in CIELAB, with positive and
negative values corresponding to opposite poles of the color axis

Ensemble Contrast level Feature of the ensemble

C1 -30,-15,15,30 Unbiased ensembles with gray average
C2 -45,-15,15,45

C3 -60,-30,30,60

C4 -15,0,15,30 Biased ensembles to test for interactions between hue and saturation
C5 -30,-15,45,60

C6 -30,0,30,60

C7 0,15,30,45 Ensembles that span or do not span the gray boundary to test for categorical effects at gray
C8 15,30,45,60

C9 30,45,60,75

Targets -60,-45,-30,-15,0,15,30,45,60
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The four ensembles tested for this experiment are listed in
Table 2, and were tested as part of a single session. The first
two of these again had equal contrast along the two comple-
mentary colors (two levels of each) and thus had a mean
chromaticity of gray, and were again used to test whether
observers would misperceive the mean gray to be part of the
set even though it did not share the “hue” of any of the mem-
bers. They differed in the contrast range spanned by the en-
semble, and thus the distance from gray. The third was biased
to have a higher contrast along a given hue angle compared to
the complement and again tested for interactions between hue
and saturation. Finally, the fourth was restricted to one hue
angle and the gray point, without the complementary axis, to
compare performance for single hues and the effect of the gray
boundary. As in the preceding experiment, targets were the
same for each set and included the four ensemble levels and
five intervening levels.

Experiment 3: Ensembles varying in luminance rather than
chromatic contrast In the third experiment, individual circles
in an ensemble had the same chromaticity, but were either all
darker or lighter relative to gray or were a combination of
increments and decrements. The luminances of the elements
are given by the proportionalWeber contrast times 100 (e.g., a
value of +60 was 1.6 times the background contrast or 32 cd/
m2 while a value of -60 was 8 cd/m2). When presenting these
ensembles, the background on the monitor was still a neutral
gray, but the elements had a fixed chromatic contrast of 30 in
the cone-opponent plane, and again varied randomly in hue on
each trial. Thus, the set appeared as different lightness levels
of a desaturated red or green, etc. The chromatic contrast was
added so that the zero-contrast element appeared distinct from
the gray background.

In order to compare the results for chromatic versus lumi-
nance variation, the differences in perceived lightness versus
saturation in the ensembles need to be comparable. Rather
than assume the CIELAB scaling this, we again empirically
evaluated the lightness scale by asking a set of participants to
perform a contrast-matching task between luminance and
chromatic contrast, a task that can be performed reliably
(Switkes & Crognale, 1999). For this, nine equally spaced
contrasts ranging from -60 to 60 Delta E along the LvsM axis
were displayed as circles in an upper row, and then luminance
levels were adjusted in circles shown in a corresponding lower
row until the lightness steps appeared as the same magnitude
as the chromatic steps (Fig. 2). In this case only the central
gray was fixed, and the four observers varied all eight of the
other lightness levels. The result of this experiment showed a
roughly linear relationship between luminance and chromatic
contrast (Switkes & Crognale, 1999), but indicated that the
nominal range of -60 to 60 Delta E for chromatic contrast
corresponded to a range of approximately -40 to 40 for lumi-
nance contrast (Fig. 2). We therefore used a linear scaling of
the CIELAB luminance values adjusted for this range.

The ensembles for the luminance-varying sets and the ra-
tionale for using them are listed in Table 3. The first two again
had a mean equal to the background luminance level, to test
whether this level was less likely to be misperceived as a
member of sets with only increments and decrements. The
third and fourth again tested for interactions between the

Table 2 Chromatic contrasts of the ensembles and test stimuli. Contrasts correspond to the levels in the scaled cone-opponent space

Ensemble Contrast levels Features of the ensemble

E1 -60,-15,15,60 Unbiased ensemble with gray average

E2 -120,-30,30,120 Unbiased ensemble with gray average

E3 -30,0,30,120 Biased 2-hue ensemble

E4 0,15,30,60 Single-hue ensemble

Targets -120,-60,-30,-15,0,15,30,60,120

Fig. 1 Chromatic contrast scaling task. Top: Observers were shown
fixed extremes of the chromatic axis and then adjusted the intermediate
levels to produce perceptually equal contrast steps. Bottom: The
subjective contrast of the ensemble stimuli estimated from the contrast
scaling. Note reference values of +30, 60, or 90 indicate the target steps
(.25, .5, or .75 of the 120 max) that observers adjusted the chromatic
contrasts for. Data points are the mean settings across observers +1
standard error. Lines show the scaling predicted by a linear (dashed) or
(suprathreshold) log contrast response (diamonds)
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magnitude and sign of the luminance of the elements. The
final sets consisted of decrement-only (L5–L7) or increment-
only (L8–L10) sets to test for categorical effects at the back-
ground luminance level separating increments and decre-
ments. Ensembles L1–L4 and L5–L10 were tested in different
sessions with the order again randomized across participants.

Procedure

For each of the experiments participants performed a member
identification task where an ensemble was presented for 0.5 s
and then was followed after 1 s by the presentation of a single
target stimulus (Fig. 3). The observer was given unlimited
time to report if the target was a part of the presented ensem-
ble. All ensembles were made of four contrast levels, and with
the hues varied randomly on each trial. Specifically, for a
given ensemble of chromatic contrasts the contrast levels were
fixed, but the hue angle of the set was randomly rotated for
each presentation (within the CIELAB or cone-opponent
space). The test target included the four contrast levels present
in the ensemble and five additional contrasts that included
three intermediate levels and two levels outside the ensemble
range. During a single session, observers were tested on three
or four different ensembles. Each ensemble/target condition
was shown in random order for total of 20 repetitions, from
which we calculated the proportion of times the observer
thought the target level was present.

Results

Experiment 1: Color ensembles in CIELAB space

Unbiased color ensembles (gray average)As noted, in the first
experiment we examined performance for ensembles that var-
ied in chromatic contrast relative to the gray, defining the
contrasts by the colorimetric distances in CIELAB. The results
for the first three ensembles are shown in Fig. 4. These were
again chosen so that the average of the colors was gray.
Contrasts that were higher than the range of presented levels
had lower false-alarm rates, while the intervening stimuli
within the range were equally likely to be perceived as part
of the set whether they were members or not. These false
alarms are consistent with ensemble coding for these

Table 3 Ensembles for luminance contrast

Ensemble Contrast levels Feature of the ensemble

L1 -30,-10,10,30 Unbiased ensembles with gray average
L2 -40,-20,20,40

L3 -50,-30,-10,10 Biased ensembles to test for interactions between contrast polarity and magnitude
L4 -10,10,30,50

L5 0,-10,-20,-30 Decrement-only ensembles with or without the zero-contrast gray
L6 -10,-20,-30,-40

L7 -20,-30,-40,-50

L8 0,10,20,30 Increment-only ensembles with or without the zero-contrast gray
L9 10,20,30,40

L10 20,30,40,50

Targets -40,-30,-20,-10,0,10, 20, 30, 40

Fig. 2 Top: Contrast matching task for luminance and chromatic
contrast. Observers were shown a fixed scale corresponding to equal
Delta E steps along the LvsM axis and adjusted the luminance of the
lower circles so that the step sizes in luminance contrast appeared
equivalent. Bottom: Average settings for equating luminance and
chromatic contrast. Data points are the mean across observers +1
standard error
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intermediate hues. However, the exception was gray, which
had comparatively low false-alarm rates even though it
corresponded to the mean of the set. This suggests that ob-
servers were not forming a strong ensemble percept of the
mean of the contrast, but rather may have averaged within
each complementary hue. On the other hand, the proportion
of false alarms was still substantial for the gray average. This
could be because of the proximity to gray of the low contrast
elements in the sets (as suggested by the higher rates for gray
for C1 and C2) or because the trials were interleaved with sets
that did include gray. Nevertheless, the main point is that gray
was misperceived less than the chromatic samples within the
gamut even though it was the metric average of the gamut.

The drop in the false-alarm rate for gray differs from the
common finding that mean of an ensemble is more likely to be
reported as presented than individual members of the set

(Whitney & Yamanashi Leib, 2018). To formally assess this,
we compared the false-alarm rate for the achromatic mean
with the rate of correctly reporting the most extreme contrasts
in each set, using a repeated-measures analysis of variance
(RMANOVA) with correction for multiple comparisons.
The specific target levels compared are shown by the points
near the bottom of Fig. 4 for each ensemble. These analyses
are summarized in Table 4. In all but one case the high-
contrast member elements were significantly more likely to
be reported than the average gray. For ensemble C2 we also
compared the false alarms for the gray target to those for the
nearest-neighbor chromatic non-member (+30 or -30). This is
shown in the final row of Table 4, and in both cases the gray
was reported significantly less often than the chromatic non-
members.

Biased color ensembles (non-gray average) The next color
sets included biased ensembles (C4–C6) with higher contrasts
for one of the hues and lower contrasts for the complementary
hue. If observers coded hue and contrast independently, then
they might be expected to mistake a high contrast of both hues
as a member of the set. For example, when shown a high-
contrast red and low-contrast green, they might separately
encode the saturation (high and low) and hue (red and green),
and thus misreport the presence of a high-contrast green. This
would be equivalent to an “illusory conjunction” of hue and
saturation, in which two features are correctly perceived but
how they are related are not (Treisman & Schmidt, 1982) .
However, the responses insteadmirrored the asymmetry of the
distribution, with lower false alarms for the outlying contrast
(Fig. 5). We assessed this by comparing the hit rate for a
contrast shown as a member hue to the false-alarm rate for
the same contrast shown in the non-member complementary
hue (Table 5). In each case the false alarms were lower, sug-
gesting again that the hue and saturation were not encoded
independently.

Ensembles with one hue category The remaining ensembles
(C7–C9) were included to examine potential categorical ef-
fects at the achromatic boundary. These sets included only one
hue category, either with (C7) or without (C8 and C9) the
zero-contrast gray as a member. There was a strong drop in
the false-alarm rates for the probes on the opposite side of gray
(Fig. 6). However, the rate of fall-off was similar for the three
sets. In particular, the change from the lowest-contrast mem-
ber to the nearest non-member was not significantly different
whether that step was to a lower contrast of the same hue (C9),
to gray (C8), or to the complementary hue (C7) (F(2,24) =
1.02, p=0.38). Thus, for these conditions – where only one
hue was displayed – the achromatic point did not emerge as
special. Nevertheless, these results remain consistent with an
averaging process that occurs primarily within rather than be-
tween the complementary hue categories.

Fig. 4 Contrast ensembles with a gray average. Plots show the percent of
times each target contrast was reported as a member of the set for the three
different ensembles. Data points are the mean across observers +1
standard error. The circled data points show targets that were members
of the set. Symbols at the bottom of the plot show the targets that were
compared in statistical analyses of the effects (see text)

Fig. 3 Member identification task. On each trial participants were shown
an ensemble with four contrast levels shown in 16 randomly spaced
elements. The ensemble appeared for 0.5 s followed by a 1-s blank.
One of nine target contrasts was then displayed and the observer
responded whether the contrast was present in the ensemble
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Experiment 2: Color ensembles in cone-opponent
space

The rejection rate for gray relative to the other intermediate
non-member targets suggests that gray is not readily perceived
as the average of an ensemble made of equal contrasts of two
complementary colors. That is, observers were less likely to
mistake a zero-contrast stimulus for a member of an ensemble
composed of visible color contrasts, even though it
corresponded to the mean chromaticity of the set. However,
this effect might also be due to the “perceptual” distance of
gray from the sample contrasts. For example, if there was a
saturating nonlinearity in the contrast response, then higher
contrasts would appear more similar to each other and gray
might appear farther removed from the ensemble members.

That is, the intermediate non-members might be perceptually
more similar to the displayed set, and thus more likely to be
misclassified. We used equal spacing of contrasts within a
perceptually uniform space to control for this potential con-
found. However, since such spaces are known to only approx-
imate uniformity, in the next set of experiments we repeated
key conditions after empirically evaluating the contrast scal-
ing as described in the Methods.

Unbiased color ensembles (gray average) Results for the first
two ensembles for the new chromatic contrasts are shown in
Fig. 7. This replicates the pattern found previously (Fig. 2)
with the gray targets showing lower false alarms even though
they represented the mean level of the set. We again assessed
this by comparing the membership rates for the gray versus
the highest contrast members, or for the gray versus the
nearest chromatic non-members (Table 6). For each ensemble
the gray versus member differences were significant for one of
the contrasts but not for the second; and similarly, for the gray
versus chromatic non-member, the gray false alarms were
lower in two of the four comparisons. Thus, these conditions
produced mixed evidence but still suggest that the mean grays
tend to be less likely to be perceived as part of the ensemble.

Biased color ensembles (non-gray average) Responses for the
two biased ensembles are shown in Fig. 8. In one case the set
had only a single hue (E4), and false alarms fell precipitously
for targets with the complementary hue. Thus, not surprising-
ly, observers were sensitive to both the hue and contrast of the
elements. However, the drop is notably stronger when cross-
ing the gray boundary compared to the higher contrast (120)
foil. This could reflect a categorical effect for the gray, such
that the averaging and perceived membership was again large-
ly confined to the displayed hue. However as noted above, we
also found steep drops for lower contrast stimuli that fell out-
side the gamut of the ensemble (Fig. 6). Finally, the remaining
ensemble had a high and low contrast for one hue but only a

Table 4 The first three rows show comparisons of the false-alarm rates
for the non-member achromatic target with the hit rate for the highest
contrast members of each ensemble. The final row compares the false

alarms for the gray target with the false alarms for the nearest non-
member targets for ensemble C2

Ensemble Contrast levels compared (mean membership rate ± SD) Omnibus RMANOVA test Bonferroni-adjusted
post hoc paired t-test

C1: -30, -15, 15, 30 -30 0 30 F (2,12) = 23.1; -30 vs. 0: p = 0.004

(88 ± 12.6) (50.6 ± 15.3) (85.7 ± 7.2) p < 0.001 0 vs. 30: p = 0.008

C2: -45, -15, 15, 45 -45 0 45 F (2,18) = 4.23; -45 vs. 0: p = 0.4

(72.5 ± 19.7) (41 ± 20.7) (77.5 ± 8.63) p = 0.031 0 vs. 45: p = 0.04

C3: -60, -30, 30, 60 -60 0 60 F (2,18) = 35.5; -60 vs. 0: p = 0.001

(75.5 ± 16.9) (19.5 ± 21.9) (80.5 ± 18.5) p <0.001 0 vs. 60: p < 0.001

C2: -45, -15, 15, 45 -30 0 30 F (2,18) = 15.6; -30 vs. 0: p = 0.009

(76.5 ± 18.3) (41 ± 20.7) (77.5 ± 11.8) p <0.001 0 vs. 30: p = 0.004

Fig. 5 Membership rates for asymmetric ensembles with a higher
contrast for one hue than the complementary hue. Plots show the
percent of times each target contrast was reported as a member of the
set for the three different ensembles. Data points are the mean across
observers +1 standard error. The circled data points show targets that
were members of the set
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low contrast for the complementary hue. The responses again
paralleled this asymmetry, with higher reports for the 120-
contrast member than the -120-contrast non-member (t(8)=-
5.25, p<.001). This again suggests that the contrast and hue
were not encoded independently in ways that led them to be
strongly confounded. On the other hand, the fall-off for the
outside non-members is relatively gradual compared to the
single-hue ensemble. This could reflect a partial confound of
hue and contrast or potentially an effect of the overall variance
of the ensembles.

In sum then, the settings confirmed the primary findings of
the first experiment, suggesting that these findings were not
simply due to how the contrasts of the elements were defined.
Both experiments suggest that (a) ensemble coding of contrast
does not reflect a simple metrical averaging of the contrasts;
(b) hue and saturation appear to be represented conjointly in
ensemble coding, so that the average is not computed inde-
pendently for the two attributes; and (c) the falloff in false

alarms is strong across the category boundary, suggesting this
boundary may delineate how the colors are averaged.

Experiment 3: Luminance contrast ensembles

In the final set of experiments our aim was to compare the
properties of ensemble coding for lightness variations versus
saturation variations. While light and dark are again comple-
mentary pairs, they may not share the same degree of categor-
ical separation as complementary colors. For example, light-
ness in some cases may behave more like a single continuum.
We therefore asked whether ensembles varying in luminance
contrast might be encoded differently from those defined by
chromatic contrast. To test this, we conducted the same mea-
surements but now for stimuli varying only in lightness.

Unbiased lightness ensembles (gray average) In the first case
we again examined ensembles where the mean luminance

Fig. 7 Contrast ensembles defined by the cone-opponent axes with a gray
average. Plots show the percent of times each target contrast was reported
as a member of the set for the two different ensembles. Data points are the
mean across observers +1 standard error. The circled data points show
targets that were members of the set. Symbols at the bottom of the plot
show the targets that were compared in statistical analyses of the effects
(see text)

Fig. 6 Membership rates for ensembles with a single hue category with
(C7) or without (C8, C9) an achromatic member. Plots show the percent
of times each target contrast was reported as a member of the set for the
three different ensembles. Data points are the mean across observers +1
standard error. The circled data points show targets that were members of
the set

Table 5 Comparison of membership rates for complementary non-member vs. member contrasts

Ensemble Contrast levels compared (mean membership rate ± SD) Paired t-test

C4: -15,0,15,30 -30 30 t(9) = 3.85

(65.5 ± 20.2) (83.5 ± 12.4) p = 0.004

C5: -30,-15,45,60 -45 45 t(9) = -2.88

(79.3 ± 14.9) (93.6 ±4.15) p = 0.28

C6: -30,0,30,60 -60 60 t(9) = -6.6

(44 ± 20.6) (79.5 ± 20.3) p < 0.001

Atten Percept Psychophys



corresponded to the zero-contrast background. Responses for
these conditions are shown in Fig. 9. There is again some hint
of a trough in the membership responses at the achromatic
point. This was assessed as before by comparing the false
alarms for the gray to the hits for the high-contrast members.
However, the difference was significant only for the higher-
variance ensemble (Table 7). The proportion of false alarms
for gray also appeared markedly higher than for the compara-
ble saturation ensembles (C1–C3), a difference that was high-
ly significant (t (43) = -4.76, p < 0.001; mean false alarm for
gray: saturation ensembles -35.6 (SD -24.4) and for lightness
ensembles -67.8 (SD 18.6). Thus, observers were more likely
to misperceive a gray when it was part of the lightness set than
the saturation set. This was further confirmed in a 2 (ensemble
types: L vs. C) x 2 (gray non-member vs. non-gray non-mem-
ber) mixed ANOVA. The gray/non-gray was taken as the
repeated measure and the ensemble type was taken as the
between-group factor. The mixed-model comparison showed
a significant difference between the type of non-membership
(F(1, 17) = 21.8; p < 0.001) with a significant interaction

between the two factors (F(1. 17) = 7.9; p = 0.01) due to the
higher false-alarm rates for gray in the luminance ensembles.

Biased lightness ensembles We similarly examined the per-
cepts for the asymmetric ensembles. This again exhibited re-
sponses that paralleled the stimulus set (Fig. 10). As in the
color ensembles, we compared the false alarms versus hits for
the same absolute contrast when it was a non-member (e.g.,
decrement) or member (e.g., increment) of the set. Values for
members of the ensembles were always greater than the false
alarms for non-members, again suggesting observers were
sensitive to how the magnitude and sign of the contrast were
combined within the set (Table 8), or alternatively in this case,
sensitive to the actual gamut of the luminance contrasts.

Table 6 The top two rows compare false-alarm rates for the achromatic target with the hit rate for the highest contrast members of each set. The bottom
two rows compare false-alarm rates for the achromatic target with the false-alarm rate for the nearest chromatic non-member for each set

Ensemble Contrast levels compared
(mean membership rate ± SD)

Omnibus RMANOVA test Bonferroni-adjusted post hoc paired t-test

E1: -60, -15, 15, 60 -60 0 60 F (2,16) = 8.33; -60 vs. 0: p = 0.028

(92.7 ± 9.1) (64.5 ± 31.2) (89.4 ± 8.8) p = 0.003 0 vs. 60: p = 0.09

E2: -120, -30, 30, 120 -120 0 120 F (2,11) = 10.42; -120 vs. 0: p = 0.013

(90.5 ± 4.6) (46.3 ± 35.2) (72.3 ± 20.6) p = 0.001 0 vs. 120: p = 0.12

E1: -60, -15, 15, 60 -30 0 30 F(2,16) = 4.996; p = 0.02 -30 vs. 0: p = 0.09

(89.5 ± 6.3) (64.5 ± 31.2) (85.2 ± 13.8) 0 vs. 30: p = 0.24

E2: -120, -30, 30, 120 -60 0 60 F(2,16) = 10.88; p = 0.001 -60 vs. 0: p = 0.03

(81.8 ± 16.5) (46.3 ± 35.2) (84 ± 11.9) 0 vs. 60: p = 0.02

Fig. 9 Luminance contrast ensembles with a gray (background level)
average. Plots show the percent of times each target contrast was
reported as a member of the set for the two different ensembles. Data
points are the mean across observers +1 standard error. The circled data
points show targets that were members of the set. Symbols at the bottom
of the plot show the targets that were compared in statistical analyses of
the effects (see text)

Fig. 8 Asymmetric contrast ensembles in the opponent color space. Plots
show the percent of times each target contrast was reported as a member
of the set for the two different ensembles. Data points are the mean across
observers +1 standard error. The circled data points show targets that
were members of the set
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Decrement-only or increment-only ensembles The last set of
conditions again probed the rate of fall off in false alarms
around the gray category boundary. Figure 11 shows that
there is a relatively gradual drop for luminance contrasts out-
side the ensemble. Again, as for color, there was no evidence
for a steeper drop at the gray boundary. False alarms for the
first contrast level outside the ensemble (L5:L10) were similar
irrespective of where the ensemble ended, or whether it was a
dark/ light ensemble. This was assessed with a two-way
RMANOVA (3 ensemble ranges x contrast sign (increments
vs. decrements)), which did not result in main effects for the
range (F(2 ,42)=2 .66 ,p=0 .082) or con t ras t s ign
(F(1,42)=3.62,p=.064). However, the falloff in the false-
alarm rate appeared more gradual for luminance than for col-
or. Comparisons showed that for the first contrast level outside
the ensemble, the errors were significantly higher (F (1, 45) =
50.88; p-value < 0.001) for the lightness ensembles (mean =
70.83 ± 3.7) than for the saturation ensembles (33.62 ± 3.6) for
all of the sets. To control for baseline differences in the mem-
bership rates, we also compared the magnitude of the fall-off
in membership reports between ensembles C4:C6 and L5:L10
using a 2 (ensemble type - saturation vs. lightness) X 3 (Gray-

1, Gray, Gray+1) ANOVA. There was a main effect of the
ensemble type (F(1,43) =16.9; p < 0.001), but no main effect
of the level of fall off relative to gray (F(2,43) = 0.13; p = 0.8)
and no interaction (F(2,43) = 0.525; p = 0.59). Thus, the light-
ness dimension appeared to show substantially less sensitivity
to the range of levels characterizing the sets, and, importantly,
showed substantially more integration across the complemen-
tary light and dark categories.

Discussion

An important aspect of ensemble perception is the ability to
estimate the average value of the parameter of interest. In most
cases this is assumed to represent the metric average of the
ensemble, though previous studies have shown that the aver-
aging can for example exclude outliers in the ensembles
(Haberman & Whitney, 2010) and may give more weight to
more salient elements (Kanaya, Hayashi, & Whitney, 2018).
Based on the responses for contrast values within an ensem-
ble, our findings with color show that color contrasts within a
hue show evidence for such ensemble representation. These
results are similar to other studies in ensemble color percep-
tion (Chetverikov et al., 2017; Maule et al., 2014; Maule &
Franklin, 2015; Maule & Franklin, 2016; Maule, Stanworth,
Pellicano, & Franklin, 2018; Virtanen et al., 2020; Webster
et al., 2014). However, in our experiments, we aimed to study
the extent to which this process could generalize across dif-
ferent stimulus categories, by focusing on averaging across
the gray boundary. As noted in the Introduction, gray repre-
sents a unique categorical boundary in color perception, and
thus might pose the greatest challenge to pooling signals
across qualitatively different stimulus categories. Our results
suggest that ensemble coding for color fails to strongly gen-
eralize across complementary color categories. In particular,
grays are less likely to be perceived as part of the ensemble,
even when they represent the average stimulus and even
though the gray is matched for the perceptual distance from
the ensemble members. Note that this is unlikely to be simply
because the gray target equaled the background, because sim-
ilar effects were observed when there was a large luminance
difference between the elements and the background. Thus at
least in the extreme our results are inconsistent with a simple

Fig. 10 Luminance contrast ensembles with a biased mean contrast. Plots
show the percent of times each target contrast was reported as a member
of the set for the two different ensembles. Data points are the mean across
observers +1 standard error. The circled data points show targets that
were members of the set. Symbols at the bottom of the plot show the
targets that were compared in statistical analyses of the effects (see text)

Table 7 Comparison of false-alarm rate for the non-member gray vs. the hit rate for the high-contrast member

Ensemble Contrast levels compared (mean membership rate ± SD) Omnibus RMANOVA test Bonferroni-adjusted post hoc paired t-test

L1: -30, -10, 10, 30 -30 0 30 F (2,16) = 3.35; NA
(83.3 ± 9.4) (70.6 ± 20.9) (83.9 ± 15.9) p = 0.061

L2: -40, -20, 20, 40 -40 0 40 F (2,16) = 4.47; -40 vs. 0: p = 0.036

(85.0 ± 10.6) (65.0 ± 16.7) (82.7 ± 21.8) p = 0.029 0 vs. 40: p = 0.14
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metrical averaging process underlying ensemble coding for
color.

A related result was reported by Rajendran and Webster
(Rajendran & Webster, 2020), who examined achromatic ad-
justments for multi-colored arrays. They had observers adjust
the mean chromaticity of the arrays so that it appeared neutral,
and found that the adjustments along one chromatic axis (e.g.,
LvsM) were affected by the variance along an orthogonal axis
(e.g., SvsLM). This is in contrast to the selectivity of masking
effects for color, for example (Sankeralli & Mullen, 1997),
and suggests instead that adding any variance in the distribu-
tion of hues made it more difficult to infer the average color.
Importantly, some observers also reported making the achro-
matic adjustments by matching the relative contrasts of differ-
ent hues, so that the mean was only estimated indirectly. Such
results suggest that while color can be characterized and quan-
tified in a three-dimensional space (for the trichromatic ob-
server), the visual system may not necessarily encode color in
terms of a metrical spatial representation. Consistent with this,
for individuals naïve to color theory, identifying the comple-
ment of a given hue is non-intuitive and prone to large error
(Webster, 2020). Moreover, studies of individual differences
in color appearance suggest that hue categories vary indepen-
dently across observers in ways that are inconsistent with an
underlying metrical scaffolding (Emery, Volbrecht, Peterzell,

& Webster, 2017). Such results suggest that different hues
may be represented more like qualitatively different “objects”
than quantitatively different vectors. As such the summary
percepts for hues may not involve or allow for an actual aver-
aging in the perceptual representation, and may instead de-
pend on indirect inferences that may be more “post-perceptu-
al,” for example an implicit weighting of the relative
“amounts” within different categories.

It is also not clear to what extent these considerations are
unique to color. Many visual attributes do have a clear metri-
cal sense (e.g., size or direction of motion), and for these,
notions of the relative values of the stimuli and their summary
statistics do seem intuitive and readily computable. However,
for other attributes the basis for ensemble percepts are less
certain. For example, observers can accurately estimate the
mean expression or gender of a crowd of faces (Haberman
& Whitney, 2007). Yet like color, even though expressions
can be conceptualized in a low-dimensional space (Young
et al., 1997), the perceptual relationships between different
facial expressions are not readily accessible, and for example
what constitutes a visually complementary expression may be
a difficult inference (Juricevic & Webster, 2012; Skinner &
Benton, 2010). Moreover, just as gray may not be directly
perceived as the mean of two complementary hues, the mean
of two opposite expressions may not be directly encoded as a

Fig. 11 Responses for (a) decrement-only or (b) increment-only lumi-
nance ensembles. Plots show the percent of times each target contrast was
reported as a member of the set for the different ensembles. Data points

are the mean across observers +1 standard error. The circled data points
show targets that were members of the set

Table 8 Tests for false-alarm vs. hit rates for the same absolute contrast as non-member (e.g., decrement) or member (e.g., increment)

Ensemble Contrast levels compared (mean membership rate ± SD) Paired t-test

L3: -50, -30, -10, 10 -30 30 t(8) = 3.71

(93.3 ± 7.7) (60.6 ± 28.1) p = 0.006

L4: -10, 10, 30 50 -30 30 t(8) = 2.74

(63.3 ± 31.0) (90.0 ± 5.6) p = 0.025
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neutral face. This raises the general question of whether en-
semble perception may operate in fundamentally different
ways for different perceptual attributes, and what these oper-
ations may indicate about the nature of the representations for
these attributes. In particular there may be a general distinction
between metrical versus non-metrical codes, with very differ-
ent routes to ensemble percepts for each. We suggest that
color – at least for very large hue differences – is among the
latter.

A related set of work has examined how ensemble coding
operates across categories or objects to understand when ele-
ments should be averaged together versus segmented into dif-
ferent sets (Cha & Chong, 2018; Khayat & Hochstein,
2019;Utochkin, 2015). For example, Elias and Sweeny
(Elias & Sweeny, 2020) tested ensemble percepts for ellipses
which were tall or flat and for which a uniform circle was thus
a category boundary. They found poorer integration across
than within the categories, and argued that this is because of
the competing need to differentiate the categories. Our results
are again consistent with the idea that very different hues
behave as qualitatively distinct categories, rather than as
points in a metrical space, and thus that the integration occurs
largely within rather than across the hue categories.

An alternative we explored for color coding was that the
visual system might independently represent a color by its
perceptual attributes of hue and saturation, and then average
within each of these attributes. This scheme might lead to
cross-attribute errors in the false alarms. However, we also
did not find evidence for this representation. This suggests
that even though hue and saturation are perceptually distinct
attributes, they are not processed separately as ensemble per-
cepts. This is consistent with the finding that hue and satura-
tion behave as integral dimensions in similarity judgments
(Burns & Shepp, 1988). With regard to ensemble coding,
our results are again consistent with forming separate repre-
sentations of summary statisticswithin each hue category, and
that the mean across categories is estimated indirectly.

Categorical effects are typically evidenced by poor dis-
crimination within the category while heightened discrimina-
tion between categories (Harnad, 1987; Witzel &
Gegenfurtner, 2018). In this regard our evidence for a categor-
ical effect at the gray boundary was mixed. On the one hand,
when ensembles included both complementary hues, for non-
member targets within the ensemble range the achromatic
level was unique in showing reduced false alarms (Figs. 4
and 7). However, when the ensemble included only a single
hue, then gray was no more likely to be rejected than targets
that were lower than the ensemble contrast range whether they
were the same or different hue (Fig. 6). Thus, these low con-
trasts were not categorically perceived as part of the ensemble.
Notably however, targets at a higher contrast than the ensem-
ble range were more likely to be classified as part of the en-
semble. In any case, our results do not point to a strong

categorical representation of contrast in the ensemble per-
cepts. It should be emphasized again that these conditions
represent the strongest categorical differences for color, since
the two categories represent complementary hues. They also
correspond to categorical boundaries in the responses of early
color-opponent mechanisms (i.e., the LvsM and SvsLM op-
ponent axes), which have been found to determine categorical
discriminations in pre-verbal infants (Skelton, Catchpole,
Abbott, Bosten, & Franklin, 2017). The lack of a strong cat-
egorical effect across gray thus suggests that categorical ef-
fects in color ensemble coding (e.g., between adjacent hues)
are likely to be weak in general. They also tend to be weak in
other measures of color appearance, and are strongly depen-
dent on the task and on the potential stages influencing per-
formance. For example, judgments that reflect basic discrim-
ination or similarity ratings (Matera et al., 2020; Webster &
Kay, 2012; Witzel & Gegenfurtner, 2013) may be less sus-
ceptible to categorical effects than tasks that require a speeded
response (Gilbert, Regier, Kay, & Ivry, 2006; Winawer et al.,
2007). The latter have been attributed to post-perceptual in-
fluences (Roberson, Pak, & Hanley, 2008) and have also been
difficult to replicate (Brown, Lindsey, & Guckes, 2011;
Martinovic, Paramei, & MacInnes, 2020; Witzel &
Gegenfurtner, 2011). Thus the prevalence and nature of cate-
gorical color coding as well as the processing stages at which
it might arise remains uncertain (Forder, He, & Franklin,
2017; Siuda-Krzywicka, Boros, Bartolomeo, & Witzel,
2019). In any case, our results suggest that there are in fact
categorical effects for color in ensemble coding, but in the
sense that the nature of the representation of color impedes
explicit averaging across very different hue categories (but not
in the sense that ensemble membership strongly generalizes
across different contrasts within the same category).

Importantly, we observed different trends for variations in
lightness levels. In this case, observers were much more likely
to experience the neutral stimulus as a member of the set, even
though the luminance and chromatic stimuli were matched for
perceptual differences. Moreover, the false alarms for outliers
faded more gradually with distance for lightness levels than
for color. This raises the possibility that something like a met-
rical average is more likely to be computed for lightness than
hue. Moreover, it points to intriguing asymmetries between
luminance and chromatic processing. Opponency is consid-
ered a hallmark of color appearance and there are clear oppos-
ing differences between both complementary hues and com-
plementary lightness levels as well as clear physiological sub-
strates identified for lightness increments and decrements
(Komban et al., 2014). Yet subjectively, Hering originally
considered that light and dark sensations are not mutually
exclusive in the way that red versus green or blue versus
yellow are (Werner, Cicerone, Kliegl, & DellaRosa, 1984),
suggesting that increments and decrements are more likely
to be perceived as part of a uniform continuum than two
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qualitatively different sensations. The ensemble coding differ-
ences between luminance and chromatic contrast are consis-
tent with these subjective impressions, and suggest that the
significance and signature of gray – a singularity at the center
of color space – may depend importantly on whether the path
through it varies in chromaticity or luminance.

Conclusions

Ensemble percepts of color contrast appear to reflect averag-
ing within rather than across complementary hue categories,
suggesting that the mean of ensembles containing very differ-
ent hues may be inferred only indirectly rather than computed
explicitly. This may reflect a representation of color in which
different hues are coded as qualitative rather than quantitative
differences, for which summary percepts like the mean may
depend more on the relative weights of the elements than the
actual mean of these weights. In contrast to these results for
chromatic contrast, luminance increments and decrements did
appear more like quantitative variations that could support
direct summary estimates. This suggests that the neutral point
of color vision has a very different status for luminance and
color. The differences between these dimensions may reflect
fundamental differences in the degree and mechanisms of en-
semble perception that depend on the nature of the visual
representations for different stimulus attributes, and whether
these representations allow an explicit averaging or only an
indirect estimate of the mean of an ensemble. Similar effects
in ensemble coding may occur for many visual attributes be-
yond color, depending on whether the visual representation is
metrical or non-metrical.
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