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Many aspects of visual coding have been successfully predicted by starting from the statistics of natural scenes and
then asking how the stimulus could be efficiently represented. We started from the representation of color char-
acterized by uniform color spaces, and then asked what type of color environment they implied. These spaces are
designed to represent equal perceptual differences in color discrimination or appearance by equal distances in the
space. The relative sensitivity to different axes within the space might therefore reflect the gamut of colors in
natural scenes. To examine this, we projected perceptually uniform distributions within the Munsell, CIE
L�u�v� or CIE L�a�b� spaces into cone-opponent space. All were elongated along a bluish-yellowish axis reflecting
covarying signals along the L–M and S–�L�M� cardinal axes, a pattern typical (though not identical) to many
natural environments. In turn, color distributions from environments were more uniform when projected into
the CIE L�a�b� perceptual space than when represented in a normalized cone-opponent space. These analyses
suggest the bluish-yellowish bias in environmental colors might be an important factor shaping chromatic sensi-
tivity, and also suggest that perceptually uniform color metrics could be derived from natural scene statistics and
potentially tailored to specific environments. © 2012 Optical Society of America

OCIS codes: 330.1690, 330.1720, 330.5020, 330.7310.

1. INTRODUCTION
Uniform color spaces are designed with the aim that equal dis-
tances in the space correspond to color differences of equal
perceptual magnitude. Color differences do not vary linearly
with changes in the stimulus spectrum, and thus it is well
known that linear color spaces, for example based on the
spectral sensitivities of the cones or cone-opponent channels,
are not perceptually uniform. Uniform spaces must therefore
apply distortions of the cone excitations in order to compen-
sate for the variations in visual sensitivity and appearance for
different stimuli and viewing conditions.

A number of uniform color spaces have been developed
and are in wide use [1–4]. The structure of these spaces is
based on empirical measurements of color discrimination
and appearance. For example, the Munsell and Natural Color
systems are color order systems and were derived from scal-
ing experiments measuring the suprathreshold appearance
differences between samples differing along defined dimen-
sions corresponding to lightness, value, or chroma or to the
Hering primaries [5,6]. Other spaces such as CIE L�u�v�

and L�a�b� were based on transformations of the CIE 1931
tristimulus values so that threshold color differences were
equated in different regions of color space [7,8], and are de-
signed to provide a uniform metric for representing color dif-
ferences. Different perceptual color spaces or order systems
thus approximately embody the characteristics of human col-
or vision at threshold and/or suprathreshold levels. But what
gives rise to these characteristics?

A powerful approach to understanding visual coding has
been to characterize the properties of the visual environment
and then ask what these properties predict about visual repre-
sentations, [9–11]. Many previous studies have adopted this
strategy to specifically examine the visual encoding of color.
For example, the distribution of intensity levels or chromati-

cities in natural scenes is not flat but instead is strongly
peaked, so that most points in the scene have lower contrast.
The most efficient representation of contrast should give
equal importance to all possible levels of the channel’s output,
and this predicts the sigmoidal response of the neural contrast
response (so that the response changes rapidly at stimulus le-
vels that are common while saturating at levels that are rare)
[12,13]. The probability distributions of colors in scenes have
also been used to infer the number and organization of seman-
tic categories required to represent color [14,15] and lightness
[16]. Similar arguments have been used to predict the relative
sensitivity to different color directions based on the relative
range of the stimulus distribution along different axes (e.g.
so that sensitivity to the cone contrasts signaling chromatic
differences is much higher than for luminance differences
because the available chromatic contrasts are much more re-
stricted) [13]. Moreover, redundancy reduction has provided a
functional account of the transformation of the cone re-
sponses into an opponent representation [17–23], while inde-
pendent components analysis of scene statistics has been
used to predict the color and spatial characteristics of cortical
cells [24]. Analyses based on natural scene statistics have also
been used to derive the spatiochromatic properties of recep-
tive fields [25–28] and spatial color contrast [29], as well as to
infer the interdependence of different perceptual attributes
defining color [30].

From this perspective, uniform color spaces are of potential
interest because they should reflect visual representations of
color that are matched to properties of the color environment.
For example, the relative scaling along different axes should
reflect the gamut of color signals along these axes. The spaces
might therefore provide clues about the structure of the envir-
onment that the visual system is calibrated for. We were spe-
cifically interested in what these spaces might suggest about
the dominant axis of color variation in the environment. In
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many natural scenes colors tend to vary primarily along
bluish-yellowish axes, which correspond to variations in the
longwave-sensitive (L) cones opposed by signals in both the
medium- (M) and shortwave-sensitive (S) cones [22,31,32]. If
the perceptual scaling of color were matched to this variation,
then we might expect these spaces to reveal reduced sensitiv-
ity for such axes. To test this, we projected distributions
that were perceptually uniform by the metrics of different
spaces, into cone-opponent space, and then compared these
predicted distributions to the color variations observed in nat-
ural images. Conversely, we also started with empirically de-
fined natural color distributions and asked how evenly
sampled they became when projected into perceptually uni-
form color spaces.

2. METHODS
A. Color Spaces
We analyzed three common uniform color spaces: the Munsell
color system, CIE 1976 L�u�v� and CIE 1976 L�a�b�. For each
we generated a set of colors based on a uniform sampling
within a sphere defined by the lightness and chromatic dimen-
sions of the space. For the Munsell space points were sampled
in cylindrical coordinates and were based on tabled values of
Munsell coordinates. For L�u�v� and L�a�b� we instead
sampled in much finer steps along Cartesian coordinates with-
in a sphere. Differences in sampling density between the
spaces were thus arbitrary but do not affect the analyses.
The sphere was centered on a presumed adapting background
corresponding to (0.33, 0.329), and had a radius of 4 in value
and chroma (Munsell) or 25 in delta E (for CIE Luv and Lab).
Coordinates within each space were converted into the cor-
responding values in a scaled version of the linear cone-
opponent space of MacLeod and Boynton [33] and Derrington
et al. [34]. The latter represents color in terms of contrast
(relative to the adapting background color) along the three
cardinal axes of early post-receptoral color coding: an achro-
matic axis (L�M� S) and two chromatic axes defined by the
opposing signals in long- and medium-wavelength sensitive
cones (L–M), or the opposing signals in the short-wavelength
cones versus the L and M cones (S–�L�M� [35]). The relative
scaling of the three axes is arbitrary or task-specific. For our
analysis we used the scaling from our previous measurements
of natural color distributions [22,31], which in turn was
chosen to roughly equate sensitivity and adaptation along the
different axes [21]. Coordinates in the space are defined by:

L–M � 1953��rmb − 0.6568�;
S–�L�M� � 5533��bmb − 0.01825�;

where rmb and bmb are the coordinates in the MacLeod–
Boynton diagram and (0.6568, 0.01825) the MacLeod–Boynton
chromaticity of Illuminant C.

After projection into the cone-opponent space, the set of
contrasts were analyzed to estimate the principal components
of the distribution as well as the relative variance along the
principal axes.

3. RESULTS
Figure 1 shows the projections into the cone-opponent space
of color distributions that are uniform within the Munsell,
CIE L�u�v� or CIE L�a�b� spaces. The three columns plot

the coordinates along the three different pairs of cardinal
axes. To examine the bias in the distributions, we estimated
the angles of the three orthogonal principal axes of the con-
trast variations. These are shown by the solid lines within each
distribution. For all 3 spaces, the color distributions become
strongly elongated along the second and fourth quadrants of
the cone-opponent space. We refer to variations between
these quadrants in general as a “bluish-yellowish” variation,
since unique blue falls in the second quadrant and unique yel-
low in the fourth quadrant of our cone opponent space [36].
For the uniform spaces the principal axis is at −29 deg
(Table 1). This is not a pure blue–yellow axis but instead cor-
responds to a color variation roughly from bluish-green to or-
ange, though again to variations in the L cones opposed by
both the S and M cones. Thus all 3 spaces predict a weaker
sensitivity to this color direction, insofar as larger differences
in cone excitation along this axis are required for the same
perceptual difference.

Consistent with this shallow angle, the variance in color sig-
nals along the L–M axis is roughly 1.4 times greater than con-
trasts along the S–�L�M� axis. Note that the scaling within
the cone-opponent space was based on estimates of the rela-
tive sensitivity to the two axes [21], and thus this relative sen-
sitivity is at least approximately preserved in each of the
uniform spaces. That is, the spaces give roughly equal percep-
tual weight to the independent signals along the cardinal chro-
matic axes. This is very different from the relative weights in
terms of metrics such as cone contrasts, for which the relative
sensitivity to signals along the cardinal axes is markedly
different [37,38].

The perceptually uniform distributions share similar char-
acteristics—and important differences—to the distributions
of colors in natural environments. For example, Fig. 2 plots
the distribution of chromaticities (i.e., the S versus LM plane)
within the same cone-opponent space for collections of out-
door scenes sampled by Webster et al. [31]. The four distribu-
tions were measured for two locations (Western Ghats in
India or the Sierra Nevadas in the USA), and at two different
times of the year (corresponding to “wet” and “dry” seasons).
Details of these images and analyses are given inWebster et al.
[31]. All four of the natural color distributions again have a
strong orientation along the negative diagonal of the space,
in part reflecting the variation from sky to earth, (though this
bias persists in the color distributions restricted to earth) [31].
There is thus a rough qualitative agreement between the color
bias in the scenes and the bias predicted by uniform color me-
trics. However, chromatic contrasts in the natural distribu-
tions are more strongly tilted toward the vertical axis, with
angles ranging from −45 deg or more. Thus the scenes had
a higher relative variance in S–�L�M� contrasts than pre-
dicted by the spaces.

If the “bluish-yellowish” bias in uniform spaces reflected
scaling that (albeit roughly) matches the perceptual gamut
of color to the range of colors in natural scenes, then the color
distributions taken from scenes should become more uniform
when projected into the perceptual spaces. To test this, we
converted the color distributions for the four environments
into CIE L�a�b�, and then compared the shapes of the distri-
butions within the uniform versus cone-opponent space. To
ensure that this analysis was not affected by the arbitrary
choice of scaling along the cone-opponent axes, we first
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converted each of the four raw distributions shown in Figure 2
by weighting the relative contribution of the separate sky and
earth color distributions for each environment so that the
mean chromaticity was as close as possible to white [39].
Next, we rescaled the cone-opponent axes so that the RMS
contrast along each axis was equated. This allowed the distri-
butions to be as close as possible to spherical in the linear
cone-opponent space (since they were now forced to have
equal radii along the three cardinal axes). Finally, we mea-
sured how uniform the resulting distributions were from
the ratio of the variances along the principal and orthogonal
axes in the chromatic plane. A ratio of 1 corresponded to an
effectively circular distribution, while values greater than 1
corresponded to distributions that were instead elliptical
and thus less uniform. These ratios are shown in Table 2 and
compared to the ratios taken when the same distributions
were projected into CIE L�a�b�. For all four environments

the chromatic variance along the principal and orthogonal
axes is more similar within the uniform color space. That
is, the natural color distributions are themselves more uni-
form when represented by a perceptually uniform color space
such as CIE L�a�b�.

4. DISCUSSION
In this study we started with the premise that uniform color
spaces embody the transformations of the cone signals re-
quired to efficiently represent the statistics of color distribu-
tions in the observer’s environment, and then asked what kind
of color environment the spaces implied. The general struc-
ture of these spaces shows important parallels with the
structure of color in natural scenes. This suggests that at least
some of the general characteristics of common uniform
color spaces can be qualitatively accounted for by the

Fig. 1. Spherical distributions in the Munsell (left), CIE L�u�v� (middle) or CIE L�a�b� (right) spaces projected into the cone opponent space.
Each row plots the distributions along different pairs of the cardinal axes; top: the S versus LM isoluminant plane; middle: luminance and LM plane;
bottom: luminance versus S plane. Lines show the axes of the first (solid) or second (dashed) principal components of the distributions in each of
the projected planes.

Table 1. Principal Axes and Cone-Opponent Contrasts of Spherical Distributions in the Uniform Color Spaces

RMS (s.d.) Primary Secondary

Color Space
L vs. M

(Rel. Cont.)
S vs. LM

(Rel. Cont.)
Luminance
(Rel. Cont.)

Theta
(degrees)

Phi
(degrees)

Psi
(degrees)

Primary
RMS (s.d.)

Secondary
RMS (s.d.)

CIE Lab Sphere 41.95 27.42 38.73 −25 −0.5 89 50.56 47.10
CIE Luv Sphere 28.32 20.77 38.73 −26 −0.8 89 39.45 39.56
Munsell Sphere 32.74 25.21 43.96 −29 −1.2 89 58.08 54.93
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characteristics of the color environment, and in turn, could
point to which environmental characteristics have been
important in shaping the perceptual representation.

As we showed, one of these general characteristics is for
chromatic sensitivity to be lowest for “bluish-yellowish” color
directions, in which signals from the S and M cones covary.
This bias is not surprising, because color spaces like CIE
L�u�v� and L�a�b� were derived from the McAdam ellipses
describing just noticeable color differences [40,41], and
Boynton et al. [42] showed that these ellipses are oriented
along a bluish-yellowish axis. Heightened discrimination
along the orthogonal, reddish-greenish direction has also been
found by Krauskopf and Gegenfurtner [43] and Danilova and

Mollon [44]. Moreover, this sensitivity bias has been observed
in a number of other contexts. For example, achromatic set-
tings show more variation both within and between observers
along the blue-yellow dimension [45,46]. At suprathreshold,
McDermott et al. [47] found in a visual search task that blue-
yellow backgrounds were less effective distractors for reddish
or greenish targets than vice versa, while Juricevic et al. [48]
found that ratings of visual discomfort (potentially related to
effective stimulus contrast [49]) were lower for blue–yellow
patterns than reddish-greenish patterns defined by the ortho-
gonal axis. Weaker sensitivity to bluish-yellowish contrasts
has also been reported in adaptation effects such as the
McCollough effect [50]. Finally, a recent study by Goddard
et al. [51] found that BOLD responses in different visual cor-
tical areas were weaker for bluish-yellowish patterns than for
reddish-greenish patterns matched for the same cardinal axis
components. Thus the bias seen in perceptually uniform
spaces is consistent with a general sensitivity bias against blu-
ish-yellowish color directions seen in many visual tasks.

However, this bias is nevertheless of interest because it re-
flects an interaction between the L–M and S–�L�M� cardinal
axes that have been thought to be central to the early postre-
ceptoral encoding of chromatic signals [34,35], and thus raises
the question of how these axes are matched to color in the
environment. Color signals along these axes have been found
to vary roughly (though not completely) independently for
some natural scenes (of dense vegetation), and this had led
to suggestions that the cardinal axes are the optimal opponent
transformations for representing natural color signals [20].
However, as noted this independence is not characteristic

Fig. 2. Natural color distributions measured from two outdoor locations (top: Sierra Nevadas, USA; bottom: Western Ghats, India) and during two
seasons (lush and arid) [31]. Plots show the pooled distributions of the chromaticities from individual scenes sampled in each environment. Lines
show the axes of the first (solid) or second (dashed) principal components of the distributions in each of the projected planes.

Table 2. Ratio of Variance in Signals along the

Principal and Orthogonal Chromatic Axes of the

Natural Distributions from the Four Environments,

where Values Closer to 1 Represent More Circular or

Unbiased Distributions

Natural Distribution Cone-Opponent Ratioa CIE L�a�b�b

Dog Valley Lush 2.80 2.05
Dog Valley Arid 4.50 3.61
India Lush 1.96 1.46
India Arid 4.23 1.62
Mean 3.37 2.19
aCone-opponent ratio gives a measure of the bias when the color distribu-

tions are represented in the cone-opponent space after rescaling the space so
that the variance along each cardinal axis is equated.

bL�a�b� ratio gives a measure of the bias when the chromaticities are instead
represented by their coordinates in the uniform color space.

K. McDermott and M. Webster Vol. 29, No. 2 / February 2012 / J. Opt. Soc. Am. A A185



of many natural environments. Webster and Mollon [22] and
Webster et al. [31] found that the dominant axes varied from
close to the S–�L�M� axis for scenes composed primarily of
lush vegetation, but tended toward a pure blue-yellow varia-
tion for more panoramic and arid scenes. The present results
suggest that more bluish-yellowish scenes may have played a
more dominant role in shaping chromatic sensitivity. A related
and possibly mutual factor is that the blue-yellow axis is also
the principal axis of variation in natural daylight [52–54]. In
either case, our results are consistent with the idea that the
greater variance in the natural world along the bluish-
yellowish dimension is matched by a weaker relative sensitiv-
ity to this dimension in color vision, as reflected in the scaling
of uniform color spaces. This is further suggested by our
finding that natural color distributions themselves become
less biased when represented in perceptually uniform color
spaces.

Our results also highlight discrepancies between the stimu-
lus distributions and the perceptual scaling of color. Quanti-
tatively, there was a clear difference between the actual axis
of minimum sensitivity implied by the perceptual spaces and
the axis of maximum contrast in the color distributions. Spe-
cifically, the perceptual minima are along axes that are more
orange–cyan than a pure blue–yellow, and fall outside the
range of any of the outdoor scenes sampled by Webster et al,
which instead varied from axes close to unique blue–yellow to
purple–yellowish-green axes close to the S axis [31]. This
raises the possibility that color sensitivity has been shaped
in the short term by environments with different color distri-
butions. In fact, natural scenes may be uncharacteristic of the
colors most individuals are exposed to in the more carpen-
tered environments of modern societies. The color distribu-
tions of such environments are not well characterized, in
part because of the interest in understanding the visual envir-
onments that shaped adaptations of the visual system over
evolutionary timescales [20, 22, 24, 31, 55 58]. Thus it remains
to be seen whether largely indoor and constructed environ-
ments might provide a more accurate prediction of the onto-
geny of color sensitivity.

A second clear discrepancy is that these color spaces do
not reflect the characteristics of color contrast discrimination.
While the CIE spaces were purportedly intended to reflect col-
or differences for an observer adapted to daylight [59], under
this adaptation sensitivity is best near the adapting point and
falls with increasing saturation or contrast from white [13, 43,
60]. In the CIE spaces sensitivity instead decreases monoto-
nically with increasing S cone activity while remaining rela-
tively constant with variations along the L–M axis, a
pattern which is more typical of adaptation to the chromati-
city that is being judged [43,61]. This scaling is consistent with
the transformations of cone signals that would be required to
adjust to changes in the illuminant to maintain color con-
stancy [62], but does not capture contrast sensitivity, which
does roughly follow the non-uniform distribution of contrasts
in scenes [12,13]. Uniform spaces that were constructed based
on empirical measurements of contrast discrimination or on
characteristic contrast distributions might therefore provide a
better perceptual metric for some viewing contexts.

Finally, we have discussed uniform color spaces as if they
were in fact perceptually uniform. Yet it is well known that
they only approximate human judgments, and the fact that

there is more than one “uniform” space highlights that there
can be important discrepancies between distances within the
space and observers’ perceptions of those differences. For in-
stance, the metrics for spaces like CIE L�u�v� and L�a�b�

were in part constrained by the desire to provide a relatively
simple and general transformation from CIE 1931 chromatici-
ties. Because they were based on threshold discrimination
they do not accurately predict large color differences and this
has prompted exploration of alternative measures, for exam-
ple based on reaction times for suprathreshold stimuli [63,64].
Because they were based on uniform fields they also fail to
predict color differences at high spatial frequencies or in
complex images, and this has led to elaborated spaces that
include weightings for spatial contrast sensitivity [65–67].
Our analyses suggest that another potential measure to ex-
ploit for predicting the perceptual impact of large color differ-
ences would be of the color statistics of the environment.
Such considerations also suggest the possibility of tailoring
perceptual color spaces to specific environments or contexts.
To the extent that individuals are immersed in particular color
worlds, for example because of their culture or vocation, their
sensitivity may be adapted to the idiosyncratic color distribu-
tions of their environment [68]. The principles we explored
could be used to guide the construction of spaces that better
capture the experience of color for observers in these con-
texts, and thus could in theory better predict perceptual
judgments and performance for these observers.
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