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Abstract

Modern accounts of color appearance differ in whether they assume that the perceptual primaries (e.g., white and
the unique hues of red, green, blue, and yellow) correspond to unique states determined by the spectral sensitivities of
the observer or by the spectral statistics of the environment. We examined the interaction between observers and
their environments by asking how color perception should vary if appearance depends on fixed responses in a set of
color channels, when the sensitivities of these channels are adapted in plausible ways to different environments.
Adaptation was modeled as gain changes in the cones and in multiple postreceptoral channels tuned to different
directions in color–luminance space. Gains were adjusted so that the average channel responses were equated across
two environments or for the same environment during different seasons, based on sets of natural outdoor scenes
(Webster et al., 2007). Because of adaptation, even observers with a shared underlying physiology should perceive color
in significantly and systematically different ways when they are exposed to and thus adapted by different contexts.
These include differences in achromatic settings (owing to variations in the average chromaticity of locations) and
differences in perceived hue (because of differences in scene contrasts). Modeling these changes provides a way of
simulating how colors might be experienced by individuals in different color environments and provides a measure of
how much color appearance might be modulated for a given observer by variations in the environment.
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Introduction

The color appearance of simple stimuli can be described by three
opponent dimensions that represent the relative contributions of
red versus green, blue versus yellow, or bright versus dark sen-
sations (Kaiser & Boynton, 1996). Colors of a given brightness can
be arranged within a circle to characterize how they differ from the
central white point, according to their saturation (distance from the
neutral point) and hue (direction from white). Hue varies with
the ratio of red versus green to blue versus yellow. Thus, most lights
appear as a mixture of these dimensions (e.g., orange appears both
red and yellow), while lights that isolate one of the axes (i.e., unique
red, green, blue, or yellow) appear more pure or fundamental
(Hurvich & Jameson, 1957; Hering, 1964).

A central yet unresolved question in modern color science
concerns the extent to which the perceptual organization of color
in terms of a small number of primary color–opponent dimensions
reflects the physiology of color coding or the properties of color
signals in the environment. In biologically based models, colors
that are special reflect special states in neural coding (Hurvich &
Jameson, 1957; De Valois & De Valois, 1993). For example, the
unique hues are assumed to correspond to the null points in the
spectral sensitivities of opponent mechanisms. Thus, pure yellow or

blue sensations arise from stimuli that silence the response of the
red-green mechanism, while white reflects the stimulus that
uniquely nulls both color-opponent channels. Environmental
accounts instead hold that some colors are special because they
reflect salient properties of the environment. For example, blue-
yellow variations may appear ‘‘unique’’ because they represent
the axis of variation in natural daylight (Pokorny & Smith, 1977;
Mollon, 2006), while the foci of basic color categories might
arise from how color signals are clustered in natural scenes
(Yendrikhovskij, 2001). Importantly, such accounts differ from
classical models of color appearance because they do not require
a specific link between sensations and neural responses (e.g.,
between a perceptual null and a response null) (Mollon & Jordan,
1997). Finally, color categories may also be influenced by culture.
Languages vary in the number of basic color terms (Kay et al.,
1997), and perceptual judgments about colors can be affected by
how a language parses color space (Davidoff et al., 1999; Winawer
et al., 2007).

Individual differences in color perception have played an
important role in testing these alternatives. The foci for basic
color terms show a high degree of concordance across the world’s
languages (Kay & Regier, 2003), and these universal tendencies
have been attributed to shared physiological constraints in the
representation of color (Kay & McDaniel, 1978; Boynton & Olson,
1990) (though sensitivity differences within a population—and
specifically the presence of color deficients—may be important for
constraining the locations of shared color categories within that
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population; Komarova and Jameson, 2008). Conversely, individual
differences in color naming within a language are often dramatic.
Observers with normal color vision vary widely in the stimuli they
select for unique hues (Webster et al., 2000; Kuehni, 2004), and
speakers of a common language can vary in the number and pattern
of color categories (Lindsey & Brown, 2008). Moreover, these
differences cannot be tied to differences in spectral sensitivity or in
the relative numbers of different cone types, suggesting that
differences in color appearance may not be strongly determined
by physiological factors (Brainard et al., 2000; Webster et al.,
2000). On the other hand, individual differences in achromatic
settings are correlated with differences in the null points of
chromatic adaptation (i.e., the stimulus that appears white to an
observer is the same stimulus that does not induce a color
aftereffect) (Webster & Leonard, 2008). This correspondence could
potentially occur if ‘‘white’’ were the null point in color coding
(a biological constraint), but this null is set by the average stimulus
spectrum the observer is exposed to (an environmental constraint).

Clearly, as the above example illustrates, color vision depends
on both the environment and the observer, and thus, the perception
and neural coding of color cannot be fully understood in isolation
from the stimulus contexts in which they operate. Specifically, the
characteristics of color coding are strongly shaped by the envi-
ronment. At evolutionary timescales, color coding presumably
developed to represent important characteristics of the structure of
the world (Simoncelli & Olshausen, 2001). The spectral peaks of
the photoreceptors and how the cone signals are combined in
postreceptoral channels have been explained by assuming that they
optimize the efficient coding of natural color signals and also by
assuming that they are tuned to specific signals (Lythgoe &
Partridge, 1989; Ruderman et al., 1998). The tuning of the L and
M cones, for instance, and the signal provided by their difference
are optimally positioned to detect the color signals provided by
ripening fruit or edible foliage as well as variations in skin tones
(Dominy & Lucas, 2001; Regan et al., 2001; Changizi et al., 2006).
These signals are also close to the axis that defines a perceptually
unique red, and a red sensation could therefore reflect both an
important ‘‘trigger feature’’ in the environment and one that is
directly encoded by one of the dominant classes of cells in
precortical color coding that compare the signals in the L and M
cones (Webster & Kay, 2007). Similarly, the principal blue-yellow
and red-green dimensions of color appearance could reflect the
responses of neural processes that evolved to represent prominent
sources of variation in the natural world (Shepard, 1992).

The environment can also shape color vision at very short
timescales through sensory adaptation. Visual coding is highly
adaptable, and thus, visual sensitivity is constantly adjusting to the
stimulus diet of the observer (Webster, 2003). These adjustments
are important both for regulating sensitivity, for example, to adjust
to the enormous variations in ambient light levels (Barlow, 1972),
and for regulating visual appearance, for instance to compensate
color appearance for changes in the spectral characteristics of the
illuminant (Brainard, 2003). Examples of these short-term adapta-
tion effects abound in virtually all aspects of perception. And
importantly, natural environments vary enough in their properties to
predict that the observer’s adaptation state will vary significantly
depending on their environment. For example, in previous work we
have shown that there are substantial differences in the color
distributions characterizing different outdoor environments and
have shown that adaptation to stimulus ensembles drawn from these
distributions leads to strong and selective changes in color
appearance (Webster & Mollon, 1997). As a result, even if color

appearance were directly tied to the spectral sensitivities of neural
mechanisms, appearance should vary as these sensitivities are
altered with adaptation. That is, observers with the same physiol-
ogy should perceive color differently when they are exposed to
different color contexts.

In this study, we explore the variations in color appearance that
could potentially result from adaptation at intermediate time-
scales—within the life of an individual but over long-term ex-
posure to their environment. Very little is known about the form
and nature of adaptation over such time frames or about the stim-
ulus characteristics that may drive it, in part because of the lo-
gistical problems of actually adapting observers for long periods.
Consequently, there is little empirical data on how much color
vision varies in individuals living in different environments, in
ways that can be unambiguously attributed to differences in the
states of adaptation (since the states of adaptation are typically not
well controlled or characterized during testing and since any
differences could also reflect cultural or other factors). However,
both laboratory studies (Eisner & Enoch, 1982; Neitz et al., 2002)
and natural experiments where visual sensitivity is compromised or
changes over time (e.g., because of changes in lens pigmentation;
Werner & Schefrin, 1993; Delahunt et al., 2004) have revealed large
and long-term shifts in color appearance. The latter studies suggest
that at least for the perception of white, adaptation can lead to
largely complete compensation when the spectral sensitivity of the
observer varies while the environment remains constant.

In the present work, we explored the converse case of complete
adaptation when the ‘‘same’’ individual is placed in different
environments and examined these long-term effects in a novel
way, by modeling possible mechanisms of color adaptation and
then asking how appearance should change under adaptation to
a given environment. The model was based on simple but
empirically plausible and theoretically motivated assumptions
about color coding and sensitivity regulation. The environments
were based on a database of calibrated color images from two
different natural ecosystems each measured across a range of
seasons (Webster et al., 2007). Natural color scenes of this kind are
more likely to characterize the stimulus distributions under which
color vision evolved, though they may be uncharacteristic of the
artificial color worlds we now inhabit. We use the model and these
color distributions to simulate the response changes that might
result from long-term and complete adaptation to different natural
color environments. These measurements provide clues to how
much and in what ways perceived color might vary across different
natural contexts—in observers with a shared biology but inhabiting
different color worlds—and thus clues to the extent to which
variations in color appearance could be attributed to differences in
the natural visual environment.

Materials and methods

Stimuli

We modeled the color responses to stimulus distributions mea-
sured from two different outdoor environments based on the image
set from Webster et al. (2007). In that study, the images were
calibrated to estimate the L, M, and S cone excitations at each pixel.
One set of images was taken in rural regions of the Western Ghats in
the Nashik District of Maharashtra, India, and consisted of farm-
lands, mountains, and temperate rainforest. The second image set
was taken in the eastern Sierra Nevadas near Reno, Nevada, and
included scenes of meadows, mountains, and coniferous forests.
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The images included panoramic and close-up scenes with a per-
spective typical of a photographic composition and were chosen to
avoid man-made objects. At both locations, images were collected
at different times of the year to assess seasonal changes in the
colors. These are especially pronounced in the India images
because of the seasonal monsoon. Details on the image sets and
their calibration are given in Webster et al. (2007).

For the present study, we obtained the color distributions
characterizing each location at two different seasons (correspond-
ing to wet and dry periods) by aggregating the luminances and
chromaticities at each pixel across 29 or more images per set. The
images were normalized to have the same average luminance.
Pixel distributions were collected for the whole images as well as
separately for regions demarcated as sky or earth. Pixels were
excluded from the region of the reference palette or when they had
saturated (255) or very low (#1) RGB values, where the image
colors were not well defined. The resulting color histograms
represented the proportion of pixels with a given color defined by
its luminance contrast or chromatic contrast along the two cardinal
axes of early postreceptoral color coding: the L versus M cone
axis or S versus L and M cone axis (Krauskopf et al., 1982).
Scaling of the relative contrasts along the axes was chosen based on
prior measurements of the contrasts that equate adaptation strength
along the two axes (Webster & Mollon, 1994). Chromatic contrasts
are related to the r and b values in the MacLeod–Boynton
chromaticity diagram (MacLeod & Boynton, 1979) by the follow-
ing equations:

L versus M contrast 5 19553ðrMB � 0:6568Þ
S versus LM contrast 5 55333ðbMB � 0:01825Þ:

The r, b values of 0.6568, 0.01825 are the MacLeod–Boynton
coordinates for the chromaticity of illuminant C and were chosen as
the nominal white point to maintain the same contrast metric as in
our earlier work. For comparison, Illuminant D65 has chromaticity
coordinates of (�3.1,�7.9) within the space, while an equal energy
white has L versus M and S versus LM values of (17.3, �15.5). In
the presented figures, contrasts are plotted in terms of the scaled
units of this color space.

Adaptation

Adaptation to each distribution was modeled as two successive
sensitivity changes designed to simulate the pattern of adjustments
observed in studies of color contrast adaptation (Webster &
Mollon, 1994; Webster, 2003). In the first, the L, M, and S cones
were independently scaled so that their responses to the mean color
of each distribution equaled their response to white. This adjust-
ment is known as von Kries adaptation and discounts variations in
the mean color of the distribution (von Kries, 1970). At the second
stage, adaptation scaled the contrast responses in multiple mech-
anisms tuned to different directions in the luminance–chromatic
space. Each mechanism was formed by a linear combination of the
cone signals so that its sensitivity varied as the cosine of the preferred
color–luminance direction within the scaled space (Derrington et al.,
1984) and was half-wave rectified so that different mechanisms
responded to opposite poles of the same axis, consistent with
polarity-specific adaptation for color contrast (Krauskopf & Zaidi,
1986; Beer & MacLeod, 2000). As few as eight mechanisms tuned
to 45° intervals are sufficient to account for the selectivity of color
contrast adaptation for multiple chromatic directions (Lennie,
1999). We arbitrarily set the number of channels to 100 to pro-

vide a fine sampling of the space, though simulations with a
smaller or larger number did not qualitatively change the pattern
of results.

Each channel was adapted by independently scaling its
sensitivity so that the average response to the adapting distribution
equaled the response to a reference distribution. This is similar in
form to the sensitivity changes seen at the level of the receptors.
Empirical measures of contrast adaptation suggest that the actual
response changes can vary from a multiplicative to a subtractive
sensitivity change depending on conditions and the relative level
of the adapting and test contrasts (Georgeson, 1985; Snowden &
Hammett, 1992; Webster & Mollon, 1994). However, a simple
multiplicative scaling is consistent with models based on coding
efficiency which assume that the response range is matched to the
gamut of color signals (Atick et al., 1993; MacLeod & von der
Twer, 2003) and is a plausible candidate for long-term adaptation
(since without some scaling of this sort, it is unclear how a match to
the range of stimulus levels could be achieved).

Response measures

By adapting the model mechanisms to produce the same outputs
in response to different stimulus environments, we examined three
aspects of color appearance and how they might change across
environments: (1) the stimulus perceived as white, which corre-
sponds to balanced activity in the cones and thus no activity in the
cone-opponent channels, and which is set by the average chro-
maticity in the environment; (2) perceived contrast, which cor-
responds to the magnitude of the responses in the cone-opponent
channels and which is set by the range of color signals in the
environment; and (3) perceived hue, which in the model corre-
sponds to the relative contrast responses across channels and is set
by the relative contrasts along different chromatic axes within the
environment.

Results and discussion

Fig. 1 illustrates an example of how color appearance changes
following simulated adaptation to different environments. The
upper pair of images shows roughly the same scene in India
captured during the monsoon (wet) or winter (dry) seasons. In the
lower images, the scene colors have been rendered after adjusting
the channels so that the average channel responses within each
environment are the same. Specifically, colors in the monsoon
scene have been transformed by simulating how the image would
appear after rescaling the sensitivities in the cones and postrecep-
toral processes so that within each channel, the mean response to
the monsoon images equaled the mean response to the winter
images, or vice versa.

Such images allow one to visualize how colors might appear to
identical observers living in different environments (i.e., to
observers with the same color mechanisms but adapted differently
to each setting) (McDermott et al., 2008). During the monsoon, the
hillsides are dominated by lush green vegetation and, as we note
below, chromatic contrasts tend to vary more strongly along an axis
closer to the S versus LM dimension. An observer within this
setting should become desensitized to these dominant color
features and in particular to the average green bias in the scene
so that they become toned down and less salient (lower left).
Alternatively, during the arid winter season, the dominant terrestrial
color shifts toward yellow and the principal axis of the color
variations rotates toward the negative diagonal of the L versus M and
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S versus LM space, a direction that appears as a bluish-yellowish
variation. Greens are now rare, and adaptation heightens their
contrast and perceptual salience so that they are now highly
conspicuous (lower right). In fact, these changes are consistent
with anecdotal observations about changes in color perception as
one travels to new locations or becomes acclimated to old ones.

To quantify these changes, we examined the differences in the
distributions and the presumed differences in adaptation states to
them. Fig. 2 plots the probability distributions for chromatic
contrasts from the two environments during the two seasons. In
each, the density of colors has two prominent lobes corresponding
to pixels from the earth and sky, and the colors tend to be biased
along the negative, bluish-yellowish diagonal of the space. Across
the four settings, there are changes in the mean chromaticity and in
the range and direction of the principal axis of the contrast
distribution. If the landmarks of color appearance reflect fixed
physiological signals, then adaptation to differences in the mean
chromaticity should alter the perception of the white point, while
adaptation to the differences in the contrasts should alter both
perceived contrast and perceived hue. We consider these in turn.

Average scene colors and the perception of white

In conventional models of color coding, the achromatic axis
represents the null point of the color-opponent channels and thus
also corresponds to the balance of activity across the cones that
would give rise to this null (Hurvich & Jameson, 1957). The cones
or cone-specific pathways adapt to the average color they are
exposed to, and thus one basis for establishing the white point might
simply be adaptation to the average color in the environment
(MacLeod, 1985; Brainard & Wandell, 1992). In that case, judg-

ments of the stimulus that appears achromatic should vary across
observers if the average color of their environment varies. As noted
in the Introduction section, consistent with this we have recently
found that the stimulus that appears achromatic is also the null point
for chromatic adaptation, suggesting a close link between the
stimulus that appears subjectively neutral and a neutral response
state in visual coding (Webster & Leonard, 2008).

How much might this sensitivity differ because of differences
in the average color of different natural contexts? To examine
this, we compared the achromatic point to the mean chromaticity
of the distributions. Fig. 3 plots the signals along the luminance
axis and the L versus M and S versus LM opponent axes for each
setting. The set of luminances is unimodal and skewed toward
higher light levels, similar to previous measurements (Laughlin,
1987; Ruderman & Bialek, 1994). Signals along the chromatic
axes are instead markedly bimodal, again because of the color
differences between sky and earth. As a result, the average chro-
maticity falls near the trough between these two image regions and
thus is unrepresentative of most colors in the images. Brown (1994)
noted that the average color of scenes is often not gray, but the
present results suggest that even when the mean color is achro-
matic, grays may be relatively rare in at least some natural outdoor
environments.

The average chromaticity differs substantially across the four
contexts, and this predicts that the achromatic settings should
differ both across locations and over time. However, these
averages obviously depend on how the original scenes were
sampled and in particular on the ratio of earth to sky in the
images. We therefore tried to assess the perceptual white point in
three different ways by comparing the color distributions mea-
sured separately from the earth and sky (also plotted in Fig. 3).

Fig. 1. (Color online) An example of images rendered to simulate adaptation to the color statistics of the environment. The top pair of

images shows two similar views taken during the monsoon or winter seasons in India. In the lower pair, the colors have been adjusted after

adapting the model mechanisms so that the average responses to the monsoon scenes equal the average responses to the winter scenes or

vice versa.
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First, it is evident that mean differences persist even when the earth
and sky regions are considered in isolation. It is also clear that
adaptation to the earth or sky alone could not determine the white
point. The terrestrial colors are on average too green or yellow, and
thus some adaptation to sky would be required to offset this bias
(MacLeod & von der Twer, 2003; Webster et al., 2007). As a second
way of comparing variability across the scenes, for each image set
we asked what ratio of earth to sky colors would give the closest
approximation to the nominal white. This is shown in Table 1 and
Fig. 4. It is notable that different mixtures of earth and sky from
each setting can yield a chromaticity near to white and thus similar
to each other. However, this required close to an equal balance for
the Sierra scenes in the fall while a sevenfold difference for the
winter scenes in India. Thus, to maintain a constant adaptation-
defined white balance across the different environments, observers
would need to sample the images very differently. As a final
approach, we instead asked what the average chromaticity would be
if observers sampled earth and sky in the same proportion. This was
fixed at an equal ratio (again close to the white balance implied by
the fall Sierra scenes) and is the scaling shown for the earth and sky
colors in Fig. 3. These comparisons still have the problem that color
is not uniform within the earth and sky, and thus we cannot
confidently estimate the actual variations in average color that
would be expected by an observer viewing all four environments in
the same way. Nevertheless, it is unlikely that this observer would
remain in the same state of chromatic adaptation and thus likely that
the stimulus corresponding to white should change.

The range of average colors across the images is at least
comparable in magnitude to the observed range of individual
differences in achromatic settings, which can be pronounced.
However, the observed pattern for these does not clearly mimic
the pattern suggested by the scene colors we analyzed. First, the
differences between individuals vary primarily along directions
that change from blue to yellow (Werner & Schefrin, 1993; Beer
et al., 2006; Webster & Leonard, 2008). For the environments we
tested, the color changes are instead more dominant along the L
versus M axis since this is the axis that captures seasonal changes in
the color of vegetation. On the other hand, the average colors for
sky and earth do fall roughly along this axis, and thus could, for
example, vary among observers according to how they sample
different image regions. Second, despite large individual differ-
ences, relatively little variability in achromatic settings has been
reported for different populations (Ganz, 1979), while these
population differences are predicted from adaptation. This discrep-
ancy could be because we modeled natural environments, while
most modern observers live in and are presumably adapted by
predominantly artificially colored settings. A second possible
reason is that variations in the underlying white point can only be
revealed by controlling the immediate state of chromatic adaptation
(e.g., by probing the stimulus that appears white during dark
adaptation so that the subject is not simply normalized for
the current ambient stimulus). Thus, it remains to be empirically
established whether population differences occur in ways that can
be related to differences in the color environment, and we note

Fig. 2. (Color online) Probability density distribution for chromaticities in the L versus M and S versus LM space from the four settings.
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Fig. 3. Histograms of the luminance, L versus M, and S versus LM contrasts for each environment. Solid lines show the distribution for all

image pixels for luminance or for the two chromatic axes after equally weighting the sky and earth distributions. Dotted lines show the

separate histograms for earth and sky, while medium dashed lines show the cumulative probability based on both image regions. Short

dashed lines give the distribution of illuminant chromaticities, arbitrarily scaled to the same relative height. Bars for the chromatic

distributions show the average L versus M or S versus LM chromaticity for the original images (black) or after weighting earth and sky

equally (white) or in the ratio that provided a mean chromaticity closest to the nominal white (gray).
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again that there is in fact currently little actual data on color
appearance across environments that has controlled for the states of
adaptation in ways that would allow meaningful comparisons to the
effects we model.

The fact that the color distributions required for the white point
are bimodal also has implications for the visual response to
contrast—or differences relative to white. Models based on coding
efficiency predict that the contrast response function should be
shaped to equate the probability of different output levels for the
expected input distribution (Laughlin, 1987). For a unimodal
distribution, this implies a sigmoidal contrast response that is
steepest where color signals are most common and asymptotes at
very low and high contrasts where signals are rare. This is shown by
the dashed curve in each figure that plots the cumulative probability
function. (A similar but shallower curve is predicted when response
levels are equated in the presence of assumed noise; MacLeod &
von der Twer, 2003.) The observed contrast responses for lumi-
nance and color—and the fact that for both, contrast discrimination

is best near the adapting gray—are consistent with these assump-
tions. On a finer scale, however, the different distributions for
luminance and chromatic contrasts predict response functions with
different shapes. In particular, sensitivity should not be highest near
the white point since it is not the most frequent color in the scenes.
This is at odds with psychophysical measurements which have
found that luminance or chromatic contrast discrimination is
indistinguishable when the stimuli are equated for multiples of
detection threshold (Switkes et al., 1988). It is possible that
physiological constraints prevent the visual system from matching
the more complex variation in chromatic signals or that the visual
response is matched to a different environment than the ones
sampled here.

Scene contrasts and perceived contrast

We next examined how the perception of contrast should vary
when the ‘‘same’’ observer is adapted to different environments.
Like the variations in white, such changes are likely because the
visual system readily adapts to contrast, and empirical studies
have shown that subjective luminance and chromatic contrast can
be strongly biased by exposure to low- or high-contrast images
(McDermott et al., 2007) or when contrast available to observers is
reduced (Ross, 1975; Kwon et al., 2007). As noted in the Materials
and methods section, in this case the adaptation was modeled by the
gain changes in multiple postreceptoral channels formed by
different linear combinations of the cone signals and thus tuned
to different directions in color space. For the illustrated simulations,
we used the distributions formed by equal mixtures from the earth
and sky distributions, again to try to make the sampling for the
different image sets comparable and consistent with plausible white
points. Changes in perceived contrast were then estimated by
measuring the response to each channel to a pair of distributions
and then rescaling the channel sensitivities so that the average
response was the same in the presence of each context.

Fig. 5 shows the predicted changes in apparent contrast between
different environments. In these plots, smaller values correspond to
lower perceived contrast and thus reflect higher physical contrast in
the images. That is, scenes with high stimulus contrast lead to
stronger adaptation and thus lower apparent contrast for the same
physical stimulus. The upper panels show the perceptual changes in
the Nashik or Dog Valley scenes relative to a uniform color
distribution with a contrast range equal to the average of the
contrasts across the four measured settings. For each, the bias in the
color gamuts along a bluish-yellowish direction predicts that
observers should have reduced contrast sensitivity to blue-yellow
variations relative to other chromatic directions. This is consistent

Table 1. Average scene chromaticities for the different settings

LM
orig

S
orig

LM
earth

S
earth

LM
sky

S
sky

LM
var

S
var

s/e
ratio

LM
const

S
const

s/e
ratio

Nashik monsoon 11.7 �44.7 19.4 �66 �20.7 7.1 �12.9 �7.1 4.2 �1.3 �29.3 1.0
Nasik winter 38.6 �41.5 55.5 �62.2 �13.1 2.45 �4.9 �5.2 7.4 21.2 �29.8 1.0
Dog Valley spring �0.66 �25.9 15.2 �60.4 �37.8 23 �16 �10 1.5 �11 �24.5 1.0
Dog Valley fall �1.3 �6.18 38.4 �53 �51.1 39 �6.3 �6.3 1.02 �6.4 �7.0 1.0
s.d. 18.7 17.6 18.6 5.5 17.1 16.9 5.3 2.1 2.9 10.7

The mean L versus M and S versus LM values averaged across each image set are shown based on the entire images (orig) or on the
pixels analyzed separately for earth or sky regions (earth, sky). Mean values are also shown after finding the ratio of earth and sky (s/e
ratio) that yielded a chromaticity closest to the nominal white (var) for each scene, or by weighting the earth and sky equally (const).
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Fig. 4. Mean chromaticities for the images or illuminants (open circles)

from the four different environments. Image means are shown separately for

earth (filled triangles) and sky (open triangles) regions or for the equally

weighted regions (filled circles).
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with some studies of chromatic discrimination (Nagy et al., 1987)
that have found higher thresholds along the blue-yellow direction,
yet not with other work showing that contrast thresholds can be
accounted for by independent signals along the two cardinal axes
(Cole et al., 1993; Sankeralli & Mullen, 1996). The predicted losses
are also not clearly evident in measures of suprathreshold apparent
contrast (Switkes, 2008).

Between the environments, there are also strong predicted
changes in perceived contrast since these environments differ in
both the range and direction of the chromatic variations. In

particular, in both locations the seasonal changes in the images
predict that the perceptual salience of reddish-greenish axes would
cycle inversely with the stimulus contrasts along these axes, as
also illustrated in Fig. 1. On the other hand, when comparisons are
made across the two locations in similar seasons (wet or dry), then
the contrast changes are less selective. The specific changes again
depend on how the scenes are sampled, but like the white point
suggest that the perception of color contrast should vary in
measurable ways across observers if perceived contrast depends
on adaptation to the local environment.
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Fig. 5. Representations of perceived color contrast across the four different environments. Lines show the iso-contrast contours within

a given environment if the model channels are adapted to give the same average response as to a reference environment. Top panels plot

the response to the Nashik or Dog Valley settings when adaptation is equated for a uniform color distribution (dotted line). Middle panels

show the shift in perceived contrast across seasons at the same locations. In this case, the iso-contrast lines show the response to one

setting (e.g., monsoon) after adapting to equate average responses to the reference setting (e.g., winter). The reference is thus again shown

by the uniform contour (dotted line). Bottom panels instead show the changes in perceived contrast across the two locations during

comparable (lush or arid) seasons.
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Scene contrasts and perceived hue

As Fig. 5 shows, the predicted changes in contrast sensitivity are
selective for the color directions that the images vary along.
Because these directions change for the different environments,
this predicts that an observer adapted to each setting should also
experience changes in perceived hue—if these hue percepts
correspond to a fixed pattern of responses as conventional color-
opponent models assume. To explore these, we again compared the
channel responses after adapting them to two different settings and
then asked which stimulus directions would produce the same
relative responses across the channels. These were defined as the
stimuli that gave the same ratio of signals along the L versus M and
S versus LM axes and thus the same angles in the plane defined by
these axes.

Fig. 6 plots how perceived hues should be distorted across the
different settings. As before, the upper panels plot the changes
relative to a uniform color distribution, while the lower panels show
the biases going from one season to another or between the two
locations. Losses in sensitivity along a bluish-yellowish direction
bias the appearance of other stimuli away from this axis. To
maintain the same neural responses, the stimulus direction must
be rotated toward this axis to null out the bias. The predicted
rotations relative to an unbiased color environment are up to 30°
within the plane and thus perceptually large.

Changing between the four environments (e.g., across seasons or
across locations) results in rotations of up to 10° in the stimuli that
would be chosen as the unique hues. While this difference is
perceptually distinguishable, it is smaller than the range of in-
dividual differences that have been reported for the unique hues
(Webster et al., 2000; Kuehni, 2004). Importantly, it is also
generally too small to shift the perceived color category or label
for the stimulus. That is, adaptation to the different distributions is
likely to alter the perceived shade of red but not strong enough to
cause the same stimulus to be labeled with a different color term like
orange or purple. Within-category color differences of this kind
were observed by Webster et al. (2002) who compared unique hues
across observers in India and the United States. While these
different populations chose very similar points in color space for
a given focal color (relative to the distances between different
colors), there were nevertheless significant differences in the mean
focal stimulus within most categories. A similar pattern was found
by Webster and Kay (2007) in a study of population differences in
focal colors based on the World Color Survey. When projected as
angles into the color space used in the current study, the mean focal
colors from different populations have a standard deviation of 1.4
deg for red and between 4° and 5° for blue, green, and yellow. The
overall range of variation in focal choices across the different
language groups is comparable in magnitude to the range predicted
from natural seasonal variations in our model. Thus, both the
observed differences in color naming and the differences predicted
by adaptation largely reflect modulations in appearance within
rather than between color categories. However, as noted in these
studies, one discrepancy is that the hue rotations induced by contrast
adaptation should lead to correlated variations across the different
hues, while the observed variations in unique hues both between
individuals and between different linguistic groups are independent.

Spatial variations in color statistics

Thus far, we have considered how color appearance should change
when observers are exposed to different environments. However,

the color statistics within an environment are not stationary. For
example, the differences between sky and earth that were noted
above apply to different locations in the images. To the extent that
adaptation is local, this suggests that different regions of the retina
may be adapted in different ways. In fact, it is likely that local
adaptation underlies the compensation for spatial variations in
visual sensitivity, for example, compensating the white point for
the fall off in macular pigment with eccentricity (Beer et al., 2005;
Webster & Leonard). In this case, adaptation maintains perceptual
constancy by discounting changes in the observer. However, the
same processes should lead to changes in color appearance within
the observer if the environment itself changes across the visual
field.

Figs. 7 and 8 show the average chromaticities and standard
deviations of chromatic contrasts for different vertical locations in
the image sets. Averaged across the individual images, the mean
color varies systematically along the bluish to yellowish-green
direction of the sky and earth and is similar in pattern across the
different image sets. An observer scanning such scenes will on
average be exposed to more blue on the lower retina and more
yellow-green on the upper retina and consequently should have
predictably different achromatic settings for the upper and lower
fields. The spatial variations in chromatic contrast are less consis-
tent across the settings but are higher in the central and upper
regions of the image, presumably because these areas are more
likely to alternate between sky and earth. Again these results
depend on how the original images sampled the environment and
not necessarily on how an actual observer might. However, they
once more suggest that local adaptation to the differences across the
images should lead to differences in the perceived hue and contrast
of the same stimulus in the upper and lower visual fields. We are not
aware of studies that have directly assessed this, but measurements
of this kind might provide a further potential test of models in which
color appearance depends on special response states in mechanisms
that adapt to their local context.

Color appearance and the illuminant

In the preceding analyses, we focused on the color signals in the
scenes and examined how adaptation to these would be expected
to alter the perception of color if appearance is based on fixed
physiological rules such as the null points of color-opponent
channels. As we noted in the Introduction section, an alternative to
such models is that the perceived color depends on specific color
properties of the environment. In that case, the responses corre-
sponding to a particular hue could obviously vary if the signal for
that hue did not covary with the color signals controlling the
adaptation.

One proposed candidate for a salient color feature in the
environment is the color of the illuminant (Pokorny & Smith,
1987; Lee, 1990; Shepard, 1992; Mollon, 2006). We therefore also
examined how the illumination varied across the different contexts.
The ambient illumination in each of the images was measured when
the images were originally captured by recording the light spectrum
reflected from the white chip on the Munsell reference palette
(Webster et al., 2007). The illuminant chromaticities are shown in
both Fig. 3 and Fig. 9. Compared to the average scene color, the
average illumination varied less across the four conditions (see
Figs. 3 and 4). Thus, most of the change in the color distributions
was due to changes in objects (e.g., vegetation) or media (e.g., sky)
rather than the lighting. Moreover, these averages also remained
closer to the nominal white (though biased toward yellow) and were
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confined more clearly to a blue-yellow direction. Consequently, if
the white point were based on the average illuminant color—rather
than the average scene color—it should remain more stable across
environments and might be expected to vary across individuals

more tightly along the blue-yellow dimension, as actual measure-
ments suggest.

Variations in the individual illuminants were also clustered
along a blue-yellow direction. As several authors have noted
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Fig. 6. Changes in perceived hue across the different settings. Top panels plot the hue changes for the four environments when the
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previously, this could provide the potential signal for defining
unique blue and yellow (Pokorny & Smith, 1987; Lee, 1990;
Shepard, 1992; Mollon, 2006). This is shown in Fig. 9, where the
spread of illuminant colors is compared to the directions of the four
unique hues based on the study of Webster et al. (2000). The
variations in daylight are reasonably concordant with the percep-

tual blue-yellow loci, especially given that the yellow settings of
Webster et al. had a somewhat lower dominant wavelength
compared to other estimates, and as noted individual differences
in the unique hues are large. Thus, we cannot exclude a model of
color appearance based on learned properties like the illuminant.
Studies of color constancy have often emphasized the importance
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of factoring out the illumination in order to reliably represent an
object’s color. Yet, it is intriguing that it is variations in the
illuminant that could underlie some fundamental dimensions of
color appearance.

Conclusions

Color coding is intrinsically adaptable and thus should change
depending on the world the observer is adapted to. Here we have
modeled how color appearance should vary because of adaptation
to different natural color environments, if we assume no variation
in the underlying neural coding in the observer. The actual
changes depend on a number of factors including the assumed
properties of the stimulus (e.g., the color statistics of the
environment and how these are sampled in natural viewing) and
the observer (e.g., the number and selectivity of the adapted
channels and the nature of the sensitivity changes). Thus, at best
our results are only illustrative of the types of changes that might
occur and more specifically of the changes that could occur for the
particular natural outdoor environments we examined. Whether
this approach might predict actual measures of color appearance
in different observers or populations awaits better knowledge of
the color statistics of modern environments and better control of
the states of adaptation during testing. Nevertheless, these results
point to the general form and magnitude of individual and
population differences in perceptual judgments of color that might
result from differences induced by adaptation to specific environ-
ments. In particular, they illustrate that models of color appear-
ance based on fixed weightings of the cone signals actually imply
substantial variation in color vision because the color signals that
produce these fixed weightings vary with the state of adaptation,
and the states of adaptation are likely to vary substantially in
different natural visual environments. Transforming images to
embody these sensitivity changes provides a novel approach for
exploring the consequences of long-term adaptation on color ap-
pearance and, as illustrated in Fig. 1, provides a tool for simulat-
ing how the world might look to others.
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