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Observers with normal color vision vary widely in their judgments of color appearance, such as the speci-
fic spectral stimuli they perceive as pure or unique hues. We examined the basis of these individual dif-
ferences by using factor analysis to examine the variations in hue-scaling functions from both new and
previously published data. Observers reported the perceived proportion of red, green, blue or yellow in
chromatic stimuli sampling angles at fixed intervals within the LM and S cone-opponent plane. These
proportions were converted to hue angles in a perceptual-opponent space defined by red vs. green and
blue vs. yellow axes. Factors were then extracted from the correlation matrix using PCA and Varimax
rotation. These analyses revealed that inter-observer differences depend on seven or more narrowly-
tuned factors. Moreover, although the task required observers to decompose the stimuli into four primary
colors, there was no evidence for factors corresponding to these four primaries, or for opponent relation-
ships between primaries. Perceptions of ‘‘redness” in orange, red, and purple, for instance, involved sep-
arate factors rather than one shared process for red. This pattern was compared to factor analyses of
Monte Carlo simulations of the individual differences in scaling predicted by variations in standard oppo-
nent mechanisms, such as their spectral tuning or relative sensitivity. The observed factor pattern is
inconsistent with these models and thus with conventional accounts of color appearance based on the
Hering primaries. Instead, our analysis points to a perceptual representation of color in terms of multiple
mechanisms or decision rules that each influence the perception of only a relatively narrow range of hues,
potentially consistent with a population code for color suggested by cortical physiology.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional explanations of human color vision are dominated
by two fundamental theories. One describes the initial absorption
of light by the three classes of cones (trichromacy), and the second
the subsequent processing of the cone signals within opponent
mechanisms that represent color in terms of red-green, blue-
yellow, and black-white dimensions (opponent processing) [e.g.
Hurvich and Jameson (1957)]. The spectral sensitivities of the
opponent processes were first characterized by hue-cancellation
experiments, in which the intensity of a fixed primary hue (e.g.
red) was added to null the opponent color (e.g. green) in the
stimulus (Hurvich & Jameson, 1955). Subsequently, Jameson and
Hurvich also developed a hue-scaling task, in which observers
directly judged the strength of the chromatic responses by report-
ing the proportion of each primary in the stimulus (e.g. the propor-
tion of red and yellow perceived in an orange hue) (Jameson &
Hurvich, 1959). Both techniques supported many of the basic pre-
mises of opponent-process theory (Hering, 1964): that all hues can
be described as a combination of two of the four hue primaries;
that red and green, and blue and yellow, are mutually exclusive
sensations; and that the four Hering primaries appear pure or
unique in that they cannot as easily be perceived as a mixture of
other hues (e.g. seeing red as a combination of orange and purple).
Both cancellation and hue-scaling experiments have also been
widely used to quantify the opponent processes under a variety
of conditions, including how color varies with the parameters of
the stimulus [e.g. Abramov and Gordon (2005), Abramov,
d their
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Gordon, and Chan (1991), Jameson and Hurvich (1956)] or as a
function of eccentricity [e.g. Boynton, Schafer, and Neun (1964),
Hibino (1992)]. The spectral sensitivities of the red-green and
blue-yellow processes can be modeled in terms of the cone sensi-
tivities, thus showing how the cone signals are combined to form
the opponent channels (De Valois & De Valois, 1993; Wooten &
Werner, 1979; Wuerger, Atkinson, & Cropper, 2005). Such analyses
led to a standard two-stage model of color vision [e.g. Hurvich and
Jameson (1957)] where hue percepts arise directly from the
responses in the underlying red-green and blue-yellow
mechanisms.

However, while this scheme remains a dominant account of
color perception, the neural substrate predicted by opponent-
process theory remains elusive. The spectral sensitivities of the pri-
mary cell types in the retina and geniculate do not have the tuning
required to account for the stimuli that appear unique or pure (De
Valois, Abramov, & Jacobs, 1966; Derrington, Krauskopf, & Lennie,
1984). Moreover, color tuning in the visual cortex appears too vari-
able to be consistent with only two discrete chromatic dimensions
(Kuriki, Sun, Ueno, Tanaka, & Cheng, 2015; Lennie, Krauskopf, &
Sclar, 1990; Shapley & Hawken, 2011; Xiao, Wang, & Felleman,
2003; Zaidi, Marshall, Thoen, & Conway, 2014). Such results have
led to suggestions that cells with the appropriate responses may
arise later in the system and that chromatic representations
undergo transformations at multiple stages, with the neural orga-
nization mediating color appearance arising at later stages
(Brouwer & Heeger, 2009; De Valois & De Valois, 1993). It has also
led to proposals that color percepts may be mediated by special-
ized neural pathways that arise as early as the retina (Schmidt,
Neitz, & Neitz, 2014). The failure to find a clear neural basis for
red-green and blue-yellow responses has also raised the possibility
that these percepts do not reflect special states in the brain but
rather special characteristics of the environment. For example,
the blue-yellow axis falls close to the daylight locus, and thus
might correspond to a learned property of the world (Lee, 1990;
Mollon, 2006; Panorgias, Kulikowski, Parry, McKeefry, & Murray,
2012; Shepard, 1992). By this account, the perceptual null implied
by unique hues need not reflect a null in the corresponding neural
response, for the percept could in principle be tied to an arbitrary
pattern of neural activity (Mollon & Jordan, 1997). However, many
still hold that the phenomenal experience of color revealed by
tasks like hue scaling ultimately depends on neural processes that
directly signal pure hue sensations, and that these processes signal
only a small number of sensations corresponding to red-green and
blue-yellow qualia.

In the present study we explored the mechanisms of color
appearance by analyzing individual differences in hue-scaling
functions, using the methods of factor analysis to extract the
underlying dimensions of variation in hue-scaling judgments. Fac-
tor analysis is a standard statistical technique for identifying the
latent variables or factors contributing to variations in a set of
measurements or observed variables, based on the correlations
among the observed variables. For example, an individual who
reports a higher than average proportion of red at a particular
chromaticity is more likely to report more red in nearby chro-
maticities. Thus, the measurements for these stimuli will covary,
presumably because they both depend on the influence of a com-
mon process. Factor analytic techniques have been widely used
to explore properties of the visual system [e.g. de-Wit and
Wagemans (2016), Jones (1948), Peterzell (2016), Thurstone
(1944), Wilmer (2008)], and in particular, to examine the mecha-
nisms of color vision and chromatic processing (Burt, 1946;
Dobkins, Gunther, & Peterzell, 2000; Gunther & Dobkins, 2003;
Peterzell, Chang, & Teller, 2000; Peterzell & Teller, 2000; Pickford,
1946; Webster & MacLeod, 1988). In some cases this approach
can provide precise quantitative information about the
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mechanisms and how they vary across individuals. For example,
individual differences in color matching result from several well-
characterized processes that influence spectral sensitivity, includ-
ing the densities of inert screening pigments and the absorption
spectra of the photopigments, and factor analysis can be used to
identify and parcel out these different sources of sensitivity varia-
tion and specify their relative contributions to color matching as
well as their values for individual observers (MacLeod & Webster,
1988; Webster & MacLeod, 1988). In many other cases we know
much less about the processes limiting perception and perfor-
mance. However, factor analysis can still provide a valuable tool
for constraining the possible models of these processes.

Here we used factor analysis to explore the basis for inter-
observer variations in hue scaling. We reasoned that if these scal-
ing functions did reflect the activity of two processes signaling red-
green and blue-yellow sensations, then these processes should be
evident in the patterns of variation revealed by the factor analysis.
That is, the analysis should reveal a small set of general factors cor-
responding to the opponent primaries. To test this, we analyzed
two datasets, one from a previous study that measured hue-
scaling functions for 59 observers (Malkoc, Kay, & Webster,
2005), and a second that was collected for the present study. The
latter was added to provide a finer sampling of both the stimulus
set and the scaled responses, and because we were also interested
in relating the percepts of the observers (as measured by the scal-
ing) to measurements of how they verbally labeled the hues. We
report the relationship between hue scaling and color naming in
the accompanying paper (Emery, Volbrecht, Peterzell, & Webster,
2017). Here we focus on the hue-scaling functions and how they
differ across observers, and what those differences imply about
the visual representation of color.
2. Materials and methods

2.1. Participants

The participants included 26 graduate and undergraduate stu-
dents from the University of Nevada, Reno ranging from ages 18
to 47. A 27th observer was excluded based on the high variability
of their settings. Sixteen of the observers were female. Undergrad-
uate students were provided extra credit in exchange for their par-
ticipation. All observers had normal color vision as assessed by the
Cambridge Colour Test, as well as a contrast threshold task, and all
had normal or corrected-to-normal visual acuity. Each observer
participated with informed consent, and all procedures followed
protocols approved by the University of Nevada, Reno’s Institu-
tional Review Board, and were conducted in accordance with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki).
2.2. Stimuli

Stimuli were presented on a SONY Multiscan 500PS Trinitron
CRT monitor controlled with a Cambridge Research Systems
ViSaGe Stimulus Generator, providing 12-bit resolution per gun.
The monitor was calibrated with a Photo Research PR 655 spectro-
radiometer with gun outputs linearized with a gamma correction.
The stimuli had a constant luminance of 20 cd/m2 and were shown
on an 11.3 by 8.5 gray background that had the same luminance as
the test stimuli and the chromaticity of Illuminant C (CIE 1931 x,
y = 0.31, 0.316). Luminance was based on photometric measure-
ments and thus stimuli were not adjusted to be equiluminant for
individual observers. The test chromaticities were based on a vari-
ant of the MacLeod-Boynton (MacLeod & Boynton, 1979) chro-
maticity diagram, scaled based on previous studies (Webster,
ision. VI. Factors underlying individual differences in hue scaling and their
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Miyahara, Malkoc, & Raker, 2000) to roughly equate sensitivity
along the L vs. M and S vs. LM axes:

LvsM ¼ ðlmb � 0:6568Þ � 2754
SvsLM ¼ ðsmb � 0:01825Þ � 4099
LvsM and SvsLM are the chromatic contrasts along the cardinal
axes, and lmb and smb are the l and s (or r and b) coordinates in
the MacLeod-Boynton space. The contrasts are relative to the cho-
sen achromatic point in the space (0.6568, 0.01825, the MacLeod-
Boynton coordinates for illuminant C), and are scaled to roughly
reflect equivalent multiples of threshold.

Stimuli within this space were defined by a vector with a direc-
tion corresponding to the chromatic angle, and a length corre-
sponding to chromatic contrast. Contrast was fixed at a value of
60, and stimulus angle was varied in 10-deg steps to define 36 test
chromaticities. These chromaticities were shown foveally in 2-deg
uniform squares pulsing for 500 ms, with 1-s intervals of the gray
background between each pulse. The same stimulus was repeated
until the observer recorded their setting. Observers viewed the dis-
play binocularly from a distance of 200 cm in an otherwise dark
room.

2.3. Hue scaling

The hue-scaling task involved judging each hue as a relative
percentage of red, green, blue or yellow, by using a handheld key-
pad to vary the percentages displayed for each primary at the bot-
tom of the screen. Values could be varied in increments of 5% and
were restricted such that for each hue the sum of the percentages
had to total 100%, and percentages could not be assigned to both
red and green or both blue and yellow at the same time
(Abramov et al., 1991). The percentages were converted into a cor-
responding angle within a perceptual red-green (0–180 degrees)
versus blue-yellow (90–270 degrees) opponent space:

hue angle ¼ tan�1½ðblue� yellowÞ=ðred� greenÞ�:
For example, if an observer responded that a stimulus appeared

50% red and 50% blue, then the corresponding hue angle was
45 deg. Note that throughout the paper the term stimulus angle
refers to the physical stimulus in terms of its angle within the
LM vs S chromatic plane, and hue angle denotes the observer’s
response in terms of the angle within the red-green vs. blue-
yellow perceptual color space. An advantage of the hue angle is
that it allows the scaling functions to be represented by a single
dependent measure. A second advantage is that the conversion to
an angle tends to normalize for the variance differences inherent in
proportions, obviating the need for corrections such as the arcsine
transform (Warton & Hui, 2011).

2.4. Procedure

Observers participated in three sessions each lasting less than
1 h. The first session involved assessments of color vision, mea-
surements of contrast thresholds, and measurements of color nam-
ing [The latter is discussed in the accompanying paper (Emery et al.
2017)]. The remaining two sessions each involved scaling the hue
of each stimulus two times, for a total of four measurements.
Results are based on the analysis of the hue angles averaged across
the four repeated settings. The first scaling session included prac-
tice trials prior to the start of the actual experiment. These trials
consisted of making settings for six hue angles spanning the color
space in 60-deg steps. The observer then adapted for two minutes
to the background before scaling the complete stimulus set. The
stimulus angles were shown in random order and each continued
to pulse until the observer pressed a key to accept his/her setting.
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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The duration for each setting could thus vary and was not
recorded. After the last setting, an intermission was provided dur-
ing which the screen remained gray. The observer then initiated
the start of the second set of trials when s/he was ready.
3. Results

3.1. Hue scaling

Fig. 1a plots the mean hue-scaling functions for the 26 obser-
vers. These functions are based on the cosine (red-green) and sine
(blue-yellow) of the hue angle (Fig. 1b) and thus reflect the puta-
tive red-green and blue-yellow responses rather than the raw rated
proportion of red, green, blue or yellow in the stimulus. To visual-
ize the relationship between the hue angles and stimulus angles,
Fig. 1c plots the stimulus angles corresponding to the four unique
hues or four binary hues. These were estimated by fitting an 8th-
order polynomial to each observer’s scaling function (to reduce
variations owing to noise), and then calculating the values of the
fitted function for hue angles at 45-deg intervals. The loci of the
hues replicate several previously reported properties of color
appearance (Krauskopf, Williams, & Heeley, 1982; Malkoc et al.,
2005; Webster et al., 2000; Wuerger et al., 2005). First, the average
blue and yellow values (137 and 308 deg) are roughly complemen-
tary and nearly equidistant from the two cardinal axes. In contrast,
red and green do not lie along a common axis in the cone-opponent
space (averaging 13 and 227 deg). The loci for three of the binary
hues (purple, blue-green, and yellow-green) tend to cluster along
the cardinal axes. Thus, the blue-green boundary tends to separate
S-cone increments from decrements, while the purple and yellow-
green loci tend to separate + L(�M) from –L(+M) deviations from
the neutral background. The exception is the binary color orange,
which is not aligned to one of the cardinal axes. Instead, the final
cardinal-axis pole is closer to the average value for unique red.

Another feature of the hue loci is that they vary markedly across
individual observers, with an average standard deviation of 14 deg.
Such individual differences are a prominent characteristic of the
unique hues (Kuehni, 2004). Overall, variance was greatest in the
purplish region of the color space. However, the range of loci was
similar for the unique versus binary hues, such that the overall
variance did not differ between them (F(1,95) = 1.22, p = 0.17).
Finally, these variations were largely uncorrelated across the dif-
ferent color categories. For example, Table 1 shows the correlation
matrix for the unique and binary hues. When corrected for multi-
ple comparisons, the only pairs to show a statistically significant
relationship were green with yellow-green and orange with red
(Table 1).
3.2. Factor analysis

As noted, factor analysis is a widely-used dimension-reduction
technique that seeks to identify the underlying sources of variation
in a set of observations. A typical analysis involves multiple steps,
each with various options (Costello & Osborne, 2005). The factors
were computed from the correlation matrix and initially extracted
with principal component analysis (a technique closely related to
conventional factor analysis, which differs in that the variance is
not partitioned into shared and unique components; the correla-
tion matrix for the data was not positive definite, precluding stan-
dard factor analysis). The extracted factors are represented by their
factor loadings, which specify the correlation between the factor
and each variable. The square of the factor loading thus gives the
proportion of variance in the variable attributable to the factor.
PCA extracts components in decreasing order of the total variance
each accounts for, and with the factors orthogonal to each other.
ision. VI. Factors underlying individual differences in hue scaling and their
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Fig. 1. (a) Mean chromatic response functions estimated from the hue-scaling functions for the 26 observers tested in the present study. Filled symbols plot the estimated
chromatic response functions for red (positive) and green (negative); unfilled symbols plot the functions for blue (positive) or yellow (negative). Error bars correspond to the
standard deviation of the settings across observers. (b) Individual settings for the perceptual hue angles, based on converting the scaling responses to the corresponding angle
in the RG vs BY perceptual space. (c) Stimulus angles corresponding to the loci of unique or binary hues for each observer. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Correlations between the stimulus angles for the unique and binary hues for the 26 observers. Asterisks indicate significant correlations after correction for multiple comparisons.

Red Purple Blue Blue-green Green Yellow-green Yellow Orange

Red 1 .210 .056 �0.195 �0.228 �0.279 .008 .631⁄

Purple 1 .587 �0.040 �0.190 �0.113 �0.265 �0.023
Blue 1 .477 .064 �0.002 .209 .257
Blue-green 1 .117 �0.438 .015 .296
Green 1 .634⁄ .359 �0.222
Yellow-green 1 .584 �0.313
Yellow 1 .472
Orange 1
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The total variance is given by the eigenvalue, or the sum of the
squared loadings. A second major step in factor analysis is to rotate
these components with the goal of creating a simpler structure or
pattern of loadings, or to identify more meaningful or interpretable
factors (e.g., in terms of the nature of their influence on the vari-
ables). We used the standard Varimax rotation which again con-
strains the factors to be independent, but which repartitions the
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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variance between them in order to maximize the variance in the
loadings within each factor (thus favoring solutions in which the
loadings tend to be either very high or very low). This seeks a spar-
ser structure in which the variations in each variable are primarily
associated with only one of the factors (and so that the number of
near-zero loadings is maximized). Note that the polarity of the
loadings is arbitrary, since negative or positive loadings could
ision. VI. Factors underlying individual differences in hue scaling and their
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correspond to either more or less of the underlying process (e.g.
more or less red in the scaling). A final issue is with regard to the
number of factors. Generally there must be as many factors as vari-
ables to represent all of the variance, but only some of these are
assumed to account for real variations as opposed to noise. A com-
mon practice is to use a scree plot of the ordered eigenvalues to
search for a sudden drop in the variance accounted for, or to limit
the number of factors to those that account for at least the equiv-
alent of one of the observed variables (an eigenvalue of 1). How-
ever, in this case we departed from standard procedures by
taking advantage of the fact that our variables were defined by
metrical variations in the stimulus dimension. The number of fac-
tors to extract was determined by examining their loadings to
identify the factors that exhibited systematic tuning, or specifi-
cally, moderate to high loadings on two or more adjacent variables.
This non-random pattern is indicative of ‘‘real” structure in the
data rather than random noise, so that the factors with systematic
loadings are likely to correspond to meaningful variations in the
settings, and is an approach that has been applied previously and
often in factor analyses of continuous stimulus dimensions such
as spatial frequency or wavelength [e.g. Dobkins et al. (2000),
Gunther and Dobkins (2003), Peterzell and Teller (2000),
Peterzell, Werner, and Kaplan (1993, 1995), Peterzell et al.
(2000), Webster and MacLeod (1988)]. While we did not impose
a specific criterion, we note that the factors retained for the hue
scaling (Fig. 2) all had adjacent loadings of 0.6 or higher.

Fig. 2 plots the loadings for seven of the first eight extracted fac-
tors, which all met the criterion for systematic variation. Together,
these accounted for 77.4% of the total variance. Each of these fac-
tors has high positive loadings for a relatively narrow range of con-
tiguous stimulus angles. Thus the underlying factors are largely
monopolar and band-limited, and appear to more or less uniformly
tile the color space, with each accounting for the variations only
over a narrow range of stimulus angles. The general pattern
remained similar when we excluded two observers who exhibited
the highest variability (more than 1.5 times the average standard
deviation) in their repeated settings. Factors obtained for an
stimu
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Fig. 2. Factor loadings for the hue-scaling functions for the 26 observers. Curves sh
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oblique rotation (Direct Oblimin) were also similar, with little cor-
relation evident among the factors. This supports the use of Vari-
max as the appropriate criterion for the rotation. Thus the
analysis suggests that individual differences in the scaling depend
on multiple sources (i.e. factors) that vary independently and
which each influence settings only over a restricted range of chro-
matic angles (i.e. high loadings on a small number of neighboring
angles). Finally, we also added variables in the analysis corre-
sponding to the observer’s gender, age, and relative sensitivity
(as measured by preliminary contrast thresholds). However, none
of these observer variables were systematically related to the
hue scaling variables.

3.3. Factor analysis of the Malkoc et al. hue-scaling data

To verify this pattern of results, we performed a similar analysis
of the hue-scaling functions measured by Malkoc et al. (2005) for
59 observers. The equiluminant stimuli from this study fell in
intervals of 15 deg rather than 10 deg, and the color proportions
were reported by pressing buttons for each primary hue rather
than entering an actual percentage (e.g. 3 red presses and 2 yellow
for an orange hue that appeared composed of roughly 60% red).
Again, their data exhibited the same general pattern of results as
described above for the settings collected in the present study,
though the range of the hue loci were substantially more variable.
Malkoc et al. did not perform a factor analysis of their data. How-
ever, they did examine the correlations in the scaled responses for
their stimulus angles, and noted that only nearby chromatic stim-
uli showed significant correlations. Thus their analysis presaged
many of the results and conclusions reported above from the factor
analyses.

For the factor analysis with Malkoc et al.’s (2005) data, we
excluded one observer who exhibited highly variable hue angles.
The analysis of the remaining 58 observers revealed eight factors
with systematic loadings, which accounted for 84% of the variabil-
ity in the data. The loadings for these eight factors following Vari-
max rotation are shown in Fig. 3. The factor loadings for an oblique
lus angle

180 225 270 315 360

ow the loadings for the seven systematic factors following Varimax rotation.

ision. VI. Factors underlying individual differences in hue scaling and their
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Fig. 3. Factor loadings for the hue-scaling functions of Malkoc et al. (2005). Plotted
are the eight factors showing systematic loadings following Varimax rotation.
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rotation were again similar, with little correlation evident among
the factors. As in the preceding analysis, the factors appear to more
or less uniformly tile the color space, with each influencing a nar-
row range of angles.

3.4. Predicted factor loadings from Monte Carlo simulations of models

In this section we compare the observed pattern of factor load-
ings to the loadings predicted from alternative accounts of color
appearance. While there are various specific models of the mecha-
nisms of color appearance, our aim was to evaluate more qualita-
tive predictions for different classes of models, particularly with
regard to the number and nature of the processes mediating color
appearance. We first show that conventional models of opponency
are inconsistent with the factor pattern from this and Malkoc
et al.’s (2005) studies, and then propose different variants on these
models that could give rise to the general pattern of results
observed.

3.4.1. Pre-opponent sensitivity differences
Before considering models of color appearance, we note that

color-normal observers vary widely in the cone spectral sensitivi-
ties because of factors arising early in the eye. These include differ-
ences in: (1) the densities of the inert screening pigments (lens and
macular pigment), (2) the optical densities and spectral peaks of
the cone photopigments, and (3) the relative numbers of different
cone classes (Asano, Fairchild, & Blonde, 2016; Hofer, Carroll, Neitz,
Neitz, & Williams, 2005; Webster & MacLeod, 1988). These differ-
ences have large effects on chromatic sensitivity and color match-
ing, and have in some cases been associated with individual
differences in color appearance (Hibino, 1992; Jordan & Mollon,
1995; Schmidt et al., 2014; Welbourne, Thompson, Wade, &
Morland, 2013). However, color perception mostly compensates
for these spectral sensitivity differences (Webster, 2015a), such
that achromatic loci or unique hues show very little dependence
on factors such as lens (Delahunt, Webster, Ma, & Werner, 2004;
Schefrin &Werner, 1990; Werner & Schefrin, 1993) or macular pig-
ment density (Webster, Halen, Meyers, Winkler, & Werner, 2010;
Webster & Leonard, 2008), or cone ratios (Brainard et al., 2000).
Moreover, because these factors tend to impact fairly broad regions
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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of the visible spectrum, their predicted influences span a wide
range of hues, and cannot readily account for the frequent finding
that variations in the different unique hues are independent
(Webster et al., 2000). Thus we ignore these differences in the fol-
lowing analyses and focus instead on how color might be repre-
sented in mechanisms that are already normalized to discount
for much of the inherent spectral sensitivity differences among
observers.

3.4.2. Opponent processes
As noted, color-opponent theory is based on the premise that

hue sensations are directly mediated by responses in two oppo-
nent channels that signal red vs. green or blue vs. yellow sensa-
tions. The simplest accounts of these channels are that they are
formed by different linear combinations of the cone signals, with
spectral sensitivities anchored by the loci of the unique hues. For
our analyses the specific sensitivities are not critical. To very
roughly approximate the unique hues, we defined the channels as:

blue-yellow = S–L+M; which varies as a cosine of the stimulus
angle with peak response along the 90–270 deg axis and a null
(unique red and green), along the 0–180 deg axis, and
red-green = L–M+S; which peaks along the 45–225 deg axis and
has a null (unique blue and yellow) along the 135–315 deg axis

These modal channels might vary across individuals in various
ways, thereby differentially affecting the variance in the hue
scaling at different stimulus angles.
Predicted factor loadings. One way we examined these potential
variations was to directly calculate predicted factor loadings for a
given source of variation. The square of the factor loading repre-
sents the proportion of variance owing to a given factor. Predicted
loadings can thus be generated by comparing the variation in the
settings produced by changes in the factor, relative to the total
observed variation (Webster & MacLeod, 1988):

aji ¼ rxðops=oxiÞ=rj

where aji is the predicted loading of factor i for stimulus angle j, and
rj is the observed standard deviation of the settings. The predicted
standard deviation is given by the variation in the level of the factor
(rx) times the change in the setting (@ps) for a unit change in the
factor (@xi).

Monte Carlo simulations. As a second approach, we also simulated
hue-scaling functions for a set of observers who varied in specified
ways, and then factor analyzed the simulated data set. Monte Carlo
simulations have also been used in various studies to generate pre-
dicted factors (Peterzell et al., 1993, 1995; Sekuler, Wilson, &
Owsley, 1984). The first approach has the advantage that the pat-
tern of predictions for a single factor can be directly visualized,
while the second better illustrates the impact of the factor on the
hue scaling, and also allows the predictions to be extracted and
rotated in the same way as the observed measurements.

Fig. 4 shows the pattern of loadings for several potential sources
of variation in the opponent mechanisms. For this analysis, we con-
structed predicted factors based both on the variability in the indi-
vidual items, rj (in order to incorporate the actual structure in the
data); and also held rj constant and equal to the average standard
deviation (so that the structure owing to the predicted factors is
more clearly illustrated). Each figure plots both sets of predictions.
The first two sources of inter-observer variation we considered
correspond to changing the weightings of the cone inputs, which
rotates the preferred color axes of the opponent mechanisms. For
the red-green mechanism, the loadings correspond to a standard
deviation of 9 deg in the preferred axis, a value chosen to produce
maximum loadings close to 1 (Fig. 4a and b). (An alternative would
ision. VI. Factors underlying individual differences in hue scaling and their
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Fig. 4. Simulated hue-scaling functions and individual factors with loadings predicted based on the individual standard deviations at each stimulus angle (solid lines) or a
constant standard deviation equal to the average across all stimulus angles (dashed lines). (a) Hue-scaling functions for a group of observers differing in the locus of the red-
green axis and (b) a factor with loadings estimated directly from variation across observers in the locus of the red-green axis (SD = 9�). (c) Hue-scaling functions and (d)
predicted factor loadings based on variation across observers in the locus of the blue-yellowmechanism (SD = 5.6�). (e) Hue-scaling functions and (f) factor loadings predicted
for variations in the relative sensitivity of the red-green and blue-yellowmechanisms (SD = 20%) (g) Hue-scaling functions and (h) factor loadings predicted from variations in
the degree of nonlinearity in the contrast response of the red-green and blue-yellow opponent mechanisms. The nonlinearity is modeled as a cosine tuning function raised to
different exponents (SD = 0.25). (i) Hue-scaling functions and (j) factor loadings predicted for a group of observers differing in the magnitude of categorical bias in their
responses (SD = 0.15). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4 (continued)
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be to vary the standard deviation to try to find the best fit to the
observed loadings. However, as we argue for all of the predictions
in this section, the predicted pattern of loadings is unlike any of the
observed factors.) For blue-yellow, the factor shown is based on a
standard deviation of 5.6 (Fig. 4c and d). Note that a higher vari-
ance for either of these factors would be outside the range implied
by the variations in the observed measurements. Not surprisingly,
both variations produce a broad and bimodal pattern of loadings,
since the red and green (or blue and yellow) sensitivities covary.
Observers might also vary in the relative sensitivity of the red-
green and blue-yellow channels. This effect is shown in
Fig. 4e and f for a standard deviation of 20% in the relative sensitiv-
ity. Again the loadings are broad and bimodal, and in this case also
bipolar, because variations in relative sensitivity lead to both pos-
itive and negative correlations across different pairs of variables.

The final two examples illustrate potential nonlinearities in the
opponent responses, which have been explored in a variety of
studies of color appearance (Ayama, Nakatsue, & Kaiser, 1987;
Burns, Elsner, Pokorny, & Smith, 1984; Larimer, Krantz, &
Cicerone, 1975; Mizokami, Werner, Crognale, & Webster, 2006).
We did not attempt to quantitatively model the specific nonlinear-
ities revealed by these studies, but instead considered two generic
types of nonlinear responses. One way a nonlinearity could mani-
fest is in the response functions for the mechanisms. In Fig. 4g and
h this was simulated by raising the cosine tuning to different expo-
nents to broaden or narrow the tuning (with the same exponents
applied to red-green and blue-yellow) (De Valois, De Valois, &
Mahon, 2000). The predicted factor is based on a standard devia-
tion of 0.25 and predicts large effects on any stimulus angles that
are not aligned to the unique or binary axes. A second potential
nonlinearity that has been a focus of several studies could be in
the degree of categorical coding, such that observers give more
weight to the dominant hue component when judging the propor-
tions (Regier & Kay, 2009). Following Webster and Kay (Webster &
Kay, 2012), we modeled this as a relative weighting of the pure cat-
egorical response [the unique hue angle of the dominant compo-
nent (Hc)], and the linear response (Hl):
Hpred ¼ bHc þ ð1� bÞ �Hl

Fig. 4i and j show the predictions for a standard deviation of
0.15 in the value for the bias (b) [somewhat weaker than the biases
estimated by Webster and Kay (2012) for the Malkoc et al. (2005)
hue-scaling functions]. As with the response nonlinearity, the bias
systematically alters all hues between the unique and binary axes
and thus again leads to a broad pattern of loadings.

Fig. 5 shows Monte Carlo simulations of the hue-scaling func-
tions when the five hypothetical sources of variation shown in
Fig. 4 were all included. This produced four extracted factors
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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(Fig. 5b), presumably because the separate nonlinearities were
absorbed by a single factor. The loadings for each of these factors
remain bimodal and thus are incompatible with the multiple uni-
modal factors derived from the observed data. Thus, a conventional
model based on opponent red-green and blue-yellow mechanisms,
along with plausible ways these mechanisms might vary, provides
a poor account of the hue scaling.
3.4.3. Models based on independent, monopolar hue mechanisms
3.4.3.1. Four independent, monopolar hue mechanisms. In fact, this
failure of the opponent model was already evident from the rela-
tive independence of the unique hues, as described above. Several
lines of evidence suggest that red and green, and blue and yellow,
are instead encoded by separate mechanisms. For example, the red
and green responses show partial independence with adaptation
(Krauskopf et al., 1982), the size of a peripheral ‘‘perceptive” field
at which saturation stabilizes differs for the four unique hues
(Abramov & Gordon, 1994), and as noted, opposite unique hues
are often not complementary colors, and thus do not reflect oppo-
site cone combinations (Webster et al., 2000; Wuerger et al., 2005).
The splitting of the opponent axis has also been argued on theoret-
ical grounds (MacLeod, 2003), and as well on physiological grounds
in that cortical cells have low spontaneous activity and therefore
cannot signal opposite responses (excitation and inhibition) as
readily as retinal or geniculate cells (De Valois & De Valois,
1993). Such observations have led several authors to propose that
cortical color coding is mediated by four hue mechanisms rather
than the two opponent channels [e.g. Abramov and Gordon
(1994), De Valois and De Valois (1993)]. Some have also reported
the existence of ‘‘forbidden colors” (i.e., reddish-green, bluish-
yellow), and concluded that opponency is ‘‘soft wired” and can
be disabled such that four chromatic processes operate indepen-
dently (Billock, Gleason, & Tsou, 2001).

To evaluate this class of models, we generated predictions
based on a set of monopolar hue mechanisms, in which each hue
(e.g. red or green) was signaled by a different underlying channel.
Note that simply splitting a linear red-green opponent mechanism
into two half-rectified responses (as suggested in some models of
cortical color coding) does not on its own solve the problem that
the two poles vary independently, for in this case the two oppo-
nent responses remain yoked. A further problem is that for linear
mechanisms, sensitivity again varies as the cosine of the preferred
stimulus angle, and thus falls to zero in the plane orthogonal to the
preferred axis. If red and green are modeled in this way and
allowed to vary independently, then this creates some chromatic
directions where both mechanisms respond and some where nei-
ther does. In actual measurements, the opponent hue pairs
together fill the color space, but do so asymmetrically, so that for
ision. VI. Factors underlying individual differences in hue scaling and their
doi.org/10.1016/j.visres.2016.12.006

http://dx.doi.org/10.1016/j.visres.2016.12.006


Fig. 5. (a) Simulations of hue-scaling functions for observers varying in five factors
corresponding to the tuning and relative sensitivity of the two opponent mecha-
nisms, nonlinearities in the contrast response, and categorical biases. (b) Factor
loadings based on a factor analysis of the simulated dataset.
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example more stimulus angles are perceived as blue than yellow
(De Valois, De Valois, Switkes, & Mahon, 1997). We therefore sim-
ulated a case where the hue mechanisms were each allowed to
vary over arbitrary arcs of the color circle and in which the oppo-
nent pair fully spanned the space while remaining mutually exclu-
sive. For this, each mechanism was modeled as a half-rectified
cosine with a frequency scaled so that the response fell to zero at
the bounding unique hues, and with a phase equidistant from
the two unique hues. For example, the green mechanism ranged
from unique blue to unique yellow and peaked midway between.
The loci of the four unique hues varied independently across the
simulated observers, and the sensitivity of each mechanism also
varied randomly over a 20% range. An example of these hue mech-
anisms is shown in Fig. 6a. The perceived hue was assumed to cor-
respond to the relative responses across the set of channels. Thus,
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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this model was similar to the opponent-channel model in assum-
ing that the perception of red directly reflected the activity of an
underlying ‘‘red” mechanism, but differed in that the spectral sen-
sitivities of the hue mechanisms were more tailored to capture the
asymmetries in the observed measurements, and thus less to a
specific mechanistic basis for these sensitivities based on their
cone inputs.

Fig. 6b plots the predicted factor loadings for a simulated set of
50 observers. Four of these factors reflect the variations in each pri-
mary hue. They are now unimodal like the observed loadings, but
are again broadly tuned and thus inconsistent with the observed
pattern. The fifth factor (gray symbols) corresponds to the varia-
tions in relative sensitivity and is also unlike the empirical factors.

3.4.3.2. Four independent, monopolar hue mechanisms, with local
nonlinearities. There are again multiple ways these hue mecha-
nisms might vary that could potentially increase the dimensions
of inter-observer variation in the hue scaling. Global nonlinearities,
of the type considered above, again predicted factor loadings that
were too broad to replicate the observed factor pattern. However,
another possibility we explored were local nonlinearities in the
response functions. This was simulated by allowing the tuning
functions on either side of the peak sensitivity to vary indepen-
dently. Fig. 6c and d show that this manipulation, combined with
variations in the mechanism peaks, now generates a pattern of
multiple factors reminiscent of the observations. While these
asymmetric tuning curves might better emulate how the hue-
scaling functions differ, it is not obvious how they could arise from
simple nonlinearities in the neural responses (e.g. in the form of a
transducer function following the linear filter). However, local vari-
ations might also occur if observers apply different rules, e.g. in the
categorical biases they exhibit, for different subsets of colors
(Komarova & Jameson, 2013).

3.4.3.3. Eight independent, monopolar hue mechanisms. As an alter-
native, we next considered an elaborated model with eight hue
mechanisms, corresponding to the four unique hues and the four
binary hues. The responses in each were again coded as a half-
rectified cosine that fell to zero at the adjacent bounding hues.
Thus in this case the red mechanism varied from the blue-red to
the yellow–red category boundaries corresponding to ‘‘unique”
purple and orange. One possible rule for combining these channels
to form the red-green and blue-yellow components would be to
sum the channel responses weighted by each mechanism’s contri-
bution to a given hue. For example, red sensations might corre-
spond to the sum of the red, purple and orange mechanisms that
all signal redness but in different proportions. However, this effec-
tively reintroduces a broad bandwidth for each component hue,
leading to broad factors that again fail to predict the data

A second pooling rule we evaluated was to treat each of the
eight colors as a pure category (corresponding to hue angles at
45 deg intervals in the perceptual color space). The hue angle of
any stimulus could then be estimated from the pooled and normal-
ized responses across the eight mechanisms:
X

ðai � riÞ=
X

ri

where ai is the hue angle signaled by the ithmechanism and ri is the
response of the mechanism. This results in only the two nearest
mechanisms contributing to each hue response, and leads to a set
of eight narrowly tuned factors that again capture the general char-
acteristics of the observed loadings. By this account, rather than the
four primary hue dimensions of Hering, at least eight distinct hue
mechanisms are necessary to explain the variability in hue scaling.
Moreover, this account suggests that even though these eight hues
can be conceptually decomposed into the opponent dimensions, the
ision. VI. Factors underlying individual differences in hue scaling and their
doi.org/10.1016/j.visres.2016.12.006

http://dx.doi.org/10.1016/j.visres.2016.12.006


Fig. 6. Factor loadings predicted by unipolar hue mechanisms. (a) Sensitivities of independent red, green, blue and yellow mechanisms that vary in their bandwidth and
relative sensitivity, and (b) predicted factor loadings based on the simulated variations. (c) and (d) Sensitivities and predicted loadings for mechanisms with varying
bandwidths and asymmetric tuning functions. (e) and (f) Sensitivities and predicted loadings for eight independent hue mechanisms. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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‘‘redness” present in orange or purple is in fact a different and inde-
pendent attribute of the representation.
3.4.4. Population coding (continuum of channels)
The final model we explored abandoned the idea that specific

hues are directly signaled by an underyling mechanism, and was
instead based on a population code for color. In this case informa-
tion about color might be represented by the responses within an
effectively continuous distribution of channels, each tuned to a dif-
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
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ferent angle within the LM vs S chromatic plane, but none of which
necessarily generates a specific sensation. Instead, different hues
correspond to different responses within the population, such as
the mode or peak of the response distribution. Thus by this account
there are no explicit ‘‘hue” mechanisms (such as an underlying
‘‘red” channel whose response signals redness). Rather, hues are
coded as different patterns in the population response, similar to
how different spatial orientations might be represented by a con-
tinuum of channels tuned to different orientations. Individual dif-
ision. VI. Factors underlying individual differences in hue scaling and their
doi.org/10.1016/j.visres.2016.12.006
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ferences could reflect how these channels are interpreted or
labeled, so that two observers assign different percepts to the
channel responses.

The specific question, then, is how many independently-
variable labels or assignments observers might make; or in other
words, howmany distinct ‘primaries’ observers might use to repre-
sent the continuum of hues. If there were only a small number,
such as the four unique hues, then these should anchor the inter-
pretation of intermediate hues – as graded variations in the pri-
mary responses – and the influence of these anchors should span
broad regions of the hue circle. Alternatively, if observers variably
assign hue percepts to many different chromatic directions, then
there should be many anchors each with a narrowly circumscribed
influence on the appearance of neighboring directions. Thus we
asked how many anchors are needed to be consistent with the
number and chromatic bandwidth of the observed factors.

To assess this, we did not consider the underlying channels
(since similar effects could be explained by few or many channels
depending on how the channel responses are coded), but instead
simply modeled the hue-scaling curves, again asking how many
points of independent variation are required to approximate the
observed factors. Curves were generated by anchoring them rela-
tive to the mean unique hue settings for the group, with the unique
hues for each individual again generated from random normal
deviates. Intermediate hues were based on a spline interpolation
between the anchors, with the only restriction that the interpo-
lated values increased monotonically (so that predicted hue per-
cepts varied progressively around the color circle).

3.4.4.1. Models based on 4-, 8-, and 16 independently-varying
anchors. Fig. 7a shows the hue scaling curves for 50 simulated
observers who were defined by the differences in the loci of the
four unique hues, while Fig. 7b shows the resulting factor pattern.
Not surprisingly, the four variable anchors give rise to four broadly
tuned factors which are again too broad to account for the
observed loadings. In Fig. 7c and d, we added four additional
individually-varying anchors, with mean values close to the
observed binary hues. As in the hue mechanism model with added
binary mechanisms, this again results in eight factors that approx-
imate the number and bandwidths of the observed loadings. The
predicted factors exhibit weak negative tails that are not readily
evident in the observed pattern. However, when a modest degree
of noise is added to the predicted curves to simulate measurement
error, these tails are largely obscured, leaving narrow, unimodal
factors spanning the stimulus angles (Fig. 7e and f). This analysis
illustrates that within-observer noise may have obscured more
subtle features of the derived factors, but leaves intact the essential
characteristic of multiple, narrowly factors. Finally, Fig. 7g and h
show the curves and loadings based on sixteen independently
varying anchors. These were created by adding eight further
anchors intermediate to adjacent unique and binary hues. Here
the sixteen factors are now too narrowly tuned to predict the
observed loadings. Thus like the preceding model, the present
analysis is consistent with partitioning hues into roughly eight
underlying dimensions that can vary across individuals.

On the one hand, demonstrating that n sources of variations
lead to n factors may seem trivial and obvious, and the present
analysis is more an exercise in regenerating the observed varia-
tions than predicting them. However, this simulation is neverthe-
less useful for interpreting the pattern of observed loadings from
the perspective of a multichannel code for color, in which the per-
cepts need not be directly tied to the responses of mechanisms that
are themselves labeled for specific hue sensations. Within this
putative code, the labeling of the responses is not so finely graded
that the hue at each measured stimulus angle varies indepen-
dently, but is again much more narrowly tuned than predicted
Please cite this article in press as: Emery, K. J., et al. Variations in normal color v
implications for models of color appearance. Vision Research (2017), http://dx.
by an anchoring associated only with the primary hues. Thus, like
the explicit hue mechanisms, this analysis points to multiple chro-
matic mechanisms or decision rules that nevertheless provide only
a fairly coarse partitioning of hue.
4. Discussion

To summarize, our results reveal that differences in how color-
normal observers scale the hues of chromatic stimuli depend on a
surprisingly large number of narrowly-tuned factors, demonstrat-
ing that the appearance of different circumscribed regions of the
color circle are free to vary independently across observers. The
basic pattern of multiple factors was confirmed across two studies
of hue scaling involving different participants and procedures. We
have shown that this multiple-factor pattern is inconsistent with
conventional models of canonical color-opponent processes,
including models where the opposing poles of these processes
are allowed to vary independently. These findings instead reinforce
the independence of adjacent hue categories suggested by previous
studies showing that the loci of the unique and binary hues are lar-
gely uncorrelated across observers, so that the stimuli an observer
selects as pure red and blue fail to predict what they describe as
purple (Malkoc et al., 2005). However, this independence is partic-
ularly striking in the hue-scaling task, because this task explicitly
requires observers to decompose the purple into its red and blue
components, and thus might be expected to more readily tap into
putative processes signaling these components. Thus, an important
implication of the multiple observed factors is that different pro-
cesses appear to operate for different stimuli that contain these
components. That is, the varying tinges of red perceived in differ-
ent hues may have different origins. In turn, this suggests that
there may not be a small set of monolithic hue signals mediating
color sensations, and in particular, our results reveal little evidence
for an influence on hue scaling of any broadly-tuned mechanisms
such as the Hering opponent-processes or the cone-opponent car-
dinal mechanisms of precortical color coding.

As noted, it may be possible to salvage an account of color expe-
rience based on the four Hering primaries by allowing for local
nonlinearities in hue responses. These could reflect not only early
nonlinearities but also ‘‘higher-level” processes such as the influ-
ence of language or categorical biases that might differentially
impact different colors (Komarova & Jameson, 2013). Yet an alter-
native is that different hues are constrained by different processes,
such that orange and red and purple are each intrinsically free to
vary. As we showed, one way this could arise is if different hues
are each explicitly coded by different mechanisms, whose sensitiv-
ities could vary across observers. Alternatively, the sensitivities
could in principle be the same, but observers might differ in how
they interpret the patterns of activity across the channels, again
such that the labeling can vary for multiple hues and not just the
four opponent primaries. The latter case does not require multiple
underlying channels for color. That is, individuals could vary in
how they ‘‘read out” the varying levels of activity even within a
pair of mechanisms, for example tuned to the retinogeniculate car-
dinal axes. For example, two observers might differ in how they
scale ‘‘orange” hues just because they assign different interpreta-
tions to the relative activity of the cardinal mechanisms. However,
several lines of evidence point to the presence of multiple higher-
order mechanisms in the cortical coding of color [though this evi-
dence has not always gone unchallenged (Eskew, 2009)]. This
includes psychophysical studies demonstrating that sensitivity
and appearance cannot be accounted for by a small number of sep-
arable mechanisms [e.g. Krauskopf (1999)]; masking and adapta-
tion effects that are selective for multiple chromatic directions
(Gegenfurtner & Kiper, 1992; Krauskopf, Williams, Mandler, &
ision. VI. Factors underlying individual differences in hue scaling and their
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Fig. 7. Predicted scaling functions and factors based on a population code for color with varying anchors corresponding to the stimulus angles associated with different hues.
(a) and (b) Simulated scaling functions and factor loadings based on four variable anchors centered on the four primary hues. (c) and (d) Predictions for eight anchors
corresponding to the focal angles for the unique or binary hues (e) and (f) Eight anchors with added measurement noise. (g) and (h) Sixteen anchored hues.
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Brown, 1986; Webster & Mollon, 1994); and single-cell and neu-
roimaging studies revealing neural tuning along a variety of chro-
matic axes (Kuriki et al., 2015; Lennie et al., 1990; Shapley &
Hawken, 2011; Xiao et al., 2003; Zaidi et al., 2014). A further the-
oretical rationale for encoding color by multiple mechanisms is
that this representation is already evident for other stimulus attri-
butes such as spatial orientation (Hubel &Wiesel, 1968) or motion-
direction (Maunsell & Van Essen, 1983) or motor control
(Georgopoulos, Schwartz, & Kettner, 1986), which like color could
be fully specified by only a small number of channels tuned to the
cardinal dimensions (e.g. horizontal and vertical) but which
instead appear to be represented by populations of cells tuned to
many different directions. There are several advantages of this
population coding, including noise reduction and allowing cells
with broadly-tuned sensitivities to represent very fine differences
in the stimulus. It seems plausible that the visual system would
exploit similar coding strategies for representing different proper-
ties of the world, including color (Clifford, 2002; Webster, 2015b;
Zaidi et al., 2014).

A multiple-channel representation of this kind poses funda-
mental challenges for opponentcolor theory, for if there are more
than three distinctly tuned mechanisms encoding the chromatic
plane, then there are no chromatic directions that isolate a single
channel (Webster & Mollon, 1994). Thus the notion that unique
hues reflect the undiluted responses of an underlying color process
is difficult to reconcile with a distributed representation of color.
As noted in the Introduction, the uniqueness of the unique hues
has also been challenged on several other grounds, including that
neural mechanisms with the tuning required to directly mediate
the unique hues have yet to be identified. Moreover, the primacy
of the unique hues has been questioned in studies showing that
these hues are no less variable than binary hues (Bosten &
Lawrance-Owen, 2014; Malkoc et al., 2005), and may be surpris-
ingly variable depending on the instructions given to the observer
(Bosten & Boehm, 2014).

In many cases the evidence for multiple higher-order color
mechanisms rests on measurements of chromatic sensitivity or
visual performance, or in tasks not directly related to color appear-
ance (Eskew, 2009; Krauskopf, 1999). This raises the possibility
that these studies are tapping into processes or pathways that
are not directly involved in suprathreshold color perception, and
thus might still allow for the canonical red-green and blue-
yellow processes in the case of color appearance. Adaptation to
chromatic contrast results in selective response changes that
overtly alter color appearance, and thus must directly influence
the pathways and processes mediating color percepts (Webster &
Mollon, 1994). However these results have been attributed not
only to multiple adaptable channels but also to changes in the tun-
ing of a small number of mechanisms (Atick, Li, & Redlich, 1993;
Zaidi & Shapiro, 1993). Moreover, it remains possible that these
multiple mechanisms occur at intermediate cortical stages, and
that their responses are subsequently synthesized to form explicit
red-green and blue-yellow responses. While the present results
cannot exclude this possibility, they do reveal the influence of mul-
tiple processes on a task that explicitly involves judgments of color
appearance and that are operational under a fixed state of
adaptation.

Again, we considered two possible accounts of the hue scaling
in terms of multiple mechanisms. One preserved the basic notion
that hue percepts are directly generated by the responses in chan-
nels labeled for specific hues, but included channels for the inter-
mediate hues in addition to the unique hues. The second was a
more generic representation, in which the hue percepts could be
related in more or less arbitrary ways to the underlying population
activity. Importantly, in both accounts the basis for the unique
hues are very different from conventional opponent theory. Instead
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of corresponding to a null in the channel responses, both predict
that the stimuli we experience as ‘‘pure” hues occur at peaks in
the channel responses, and are not more or less special than the
peaks that occur for intermediate hues.

The observed variability in the hue scaling constrains the num-
ber of degrees of freedom in this multiple-channel structure to
roughly eight dimensions. The basis for this level of partitioning
remains uncertain, and could reflect the bandwidths of the under-
lying mechanisms or the decision rules for how they are pooled
and interpreted. However, it is noteworthy that eight dimensions
is roughly the number required to include hues which observers
can readily distinguish and classify as separate categories (i.e. both
the unique hues red, green, blue, and yellow, and the binary hues
orange, purple, blue-green, and yellow-green) while not so fine
as to distinguish among different shades within a category (e.g.
variants of orange). This suggests the possibility that the partition-
ing is linked to how observers label hues, an issue we explore in
the accompanying paper (Emery et al., 2017).

An obvious concern with either of these accounts is that in hue
scaling observers do appear able to extract the red-green and blue-
yellow sensations present in different colors. How is this possible
if, as we argue, the colors they perceive are not simply the sum
of these sensations? There are several possible answers to this
question. First, we note that the ability to dissect the percepts in
terms of some dimensions does not require that those dimensions
are explicitly represented. For example, a line tilted 30 deg can
easily be ‘‘seen” to have a definite vertical and horizontal extent
without directly experiencing these projected components. In fact,
according to opponent-process theory, hues like orange and purple
are only implicitly represented by their red and yellow or blue
components. However, in the same way, it is possible that the
red in orange or purple is only implicitly available. A further argu-
ment for the classic opponent mechanisms is that red cannot as
easily be perceptually decomposed into orange and purple. Yet this
asymmetry may again be like asking howwell one can perceive the
30 deg component of a horizontal edge.

A second answer to this concern is to note that the representa-
tion of color is (for most humans) necessarily trichromatic, because
of the limitations imposed by the number of cone classes. As a
result, three perceptual dimensions are sufficient to preserve all
of the information available in the cones. There may be no advan-
tage to deploying a higher-order perceptual representation of
color, where, for example, orange bears no phenomenal relation-
ship to red. Conversely, there are large potential advantages to cod-
ing this relationship, for it allows the representation to signal
information about the relative similarity of different spectral stim-
uli. Thus coding all hues in terms of red-green and blue-yellow
dimensions that can be associated across different stimuli may
reflect a powerful perceptual strategy, even if it reveals little about
the underlying architecture by which it is implemented. Our
results support a growing number of studies in suggesting that this
architecture may rest on many underlying mechanisms, in which
no hue sensations are unique or have a superordinate status. The
significance of the opponent axes may therefore be what they
reveal about the perceptual organization of color rather than the
neural underpinnings of this organization.
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