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Significance

The visual attributes of color and 
motion have often been 
compared to identify different 
processing streams within the 
visual system. Here, we show 
that the judgments people make 
about hue and motion direction 
– in similar tasks – also reveal 
very different representational 
principles. Individual differences 
in perceived motion direction 
reflect the structure of visual 
space (e.g., varying in the relative 
weighting of horizontal and 
vertical), while variations in hue 
percepts do not reveal privileged 
chromatic axes or a global 
coordinate frame. This distinction 
may reflect fundamental 
differences in how information 
about hue and motion direction 
are used for vision.
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The coordinate frames for color and motion are often defined by three dimensions  
(e.g., responses from the three types of human cone photoreceptors for color and the 
three dimensions of space for motion). Does this common dimensionality lead to similar 
perceptual representations? Here we show that the organizational principles for the rep-
resentation of hue and motion direction are instead profoundly different. We compared 
observers’ judgments of hue and motion direction using functionally equivalent stimulus 
metrics, behavioral tasks, and computational analyses, and used the pattern of individual 
differences to decode the underlying representational structure for these features. Hue 
judgments were assessed using a standard “hue-scaling” task (i.e., judging the proportion 
of red/green and blue/yellow in each hue). Motion judgments were measured using a 
“motion-scaling” task (i.e., judging the proportion of left/right and up/down motion in 
moving dots). Analyses of the interobserver variability in hue scaling revealed multiple 
independent factors limited to different local regions of color space. This is inconsistent 
with the influences across a broad range of hues predicted by conventional color-oppo-
nent models. In contrast, variations in motion scaling were characterized by more global 
factors plausibly related to variation in the relative weightings of the cardinal spatial 
axes. These results suggest that although the coordinate frames for specifying color and 
motion share a common dimensional structure, the perceptual coding principles for hue 
and motion direction are distinct. These differences might reflect a distinction between 
the computational strategies required for the visual analysis of spatial vs. nonspatial 
attributes of the world.

visual perception | sensory coding | perceptual representation

Normal human color vision is trichromatic. Any spectrum can be matched by varying 
the intensities of three suitable primary lights, and this is because the spectra are sampled 
by three independent classes of cones. These cone types differ based on whether their peak 
sensitivity is to short (S), medium (M), or long (L) wavelengths. The response in any given 
cone is univariant (i.e., encoding only the total number of quanta absorbed and not their 
wavelength). Thus, the triplet of cone excitations initially limits the visual representation 
of the spectral distribution of light to three dimensions. While trichromacy explains why 
different spectra match in terms of the three-dimensional set of cone excitations, it makes 
no predictions about how colors appear. Moreover, color appearance can be affected by 
many variables, including the surrounding context, and thus cannot be predicted from 
the local cone excitations alone (1). However, at its simplest level (e.g., a single uniform 
color on a neutral background), our experience of a color can be defined by the three 
perceptual attributes of hue, saturation, and brightness. In conventional color-opponent 
theory, these attributes depend on three perceptual mechanisms that mediate red vs. green, 
blue vs. yellow, and white vs. black sensations (2, 3). By this account, it is assumed that 
all hues depend on the relative activity of the underlying red–green and blue–yellow 
responses.

However, how the cone signals are combined and represented to give rise to color 
sensations remains poorly understood. Color coding is transformed at many stages 
along the visual pathway. Cells in the retina and lateral geniculate carry chromatic 
information within two subsystems that compare the L vs. M cones or the S vs. L + M 
cones (4, 5). These “cardinal mechanisms” are then combined throughout visual cortex 
to form multiple “higher order” mechanisms tuned to different chromatic directions 
that may be further recoded at different stages along the ventral visual stream (6, 7). 
Ultimately, these more advanced stages of color coding show response patterns that 
more closely align with perceptual similarities among colors than do earlier stages of 
coding (e.g., the LGN, V1) (8–13). Throughout these processing stages, there is little 
evidence for the emergence of the red–green and blue–yellow perceptual dimensions 
of conventional color-opponent theory. For example, stimuli that isolate responses in 
either of the cardinal chromatic mechanisms do not correspond to the stimuli that D
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appear pure red–green or blue–yellow (14), and the notion that 
these hues represent isolation of any mechanism is difficult to 
reconcile with the distributed population code implied by mul-
tiple higher order color mechanisms (15). Moreover, perceptual 
studies are increasingly questioning the superordinate status of 
red–green and blue–yellow sensations compared with other hues 
(16–19). Nevertheless, color-opponent theory and the idea that 
all hue percepts are represented in terms of an underlying set of 
unique or primary percepts remains a standard account of color 
appearance (20).

Previous studies have explored the perceptual representation 
of hue by analyzing individual differences in hue-scaling judg-
ments (16, 17, 21). Many aspects of perception exhibit large 
and reliable interobserver variation, and the patterns of such 
differences can provide powerful clues to the processes under-
lying sensory coding (22, 23). If hue is constructed from a 
red–green and blue–yellow scaffold, then differences in hue 
judgments between observers should reflect variations in these 
underlying perceptual primaries. For example, under this the-
ory, differences in purple, orange, and red percepts should be 
partially correlated, because they all include a common under-
lying red component. Surprisingly, however, measurements of 
these variations instead show that only hues quite similar in 
appearance covary (16, 17), suggesting that hue is not coded 
by the responses of underlying red–green and blue–yellow per-
ceptual mechanisms. In other words, the perceptual representa-
tion of hue does not appear to reflect a space defined by a small 
set of perceptual primaries.

Here we ask whether this surprising pattern of individual 
differences for hue reveals something unique about how the 
brain represents chromatic information, or whether it is a general 
property of sensory representations, or potentially of the tasks 
used to measure them. To examine this, we determined whether 
similar representations are revealed when individuals judge dif-
ferent visual attributes that are constrained (albeit in different 
ways) to share a common dimensional structure. Specifically, we 
compared judgments of hue (which varies with the direction or 
angle in color space, relative to the achromatic point) with judg-
ments of motion direction (of different angles in visual space, 
relative to a static stimulus). While chromatic and motion infor-
mation interact at many levels of the visual system, motion and 
color have provided some of the strongest evidence for separate 
visual streams, with the pathways carrying these features cours-
ing in parallel through the early visual system, and with motion 
processed primarily along the dorsal pathway and hue along the 
ventral pathway (24, 25). Functionally these features have also 
often been referred to as emblematic of the distinction between 
“what” and “where” processes, or of vision for perception vs. 
action (26). Yet, despite these physiological and functional dif-
ferences, both color and motion coordinates can be described 
by three canonical cardinal axes (Fig. 1A). For motion, these 
axes represent left–right, up–down, and near–far, while for color, 
these axes in classical color-opponent theory represent red–
green, blue–yellow, and white–black. To determine whether this 
shared dimensionality reflects common underlying perceptual 
representations, we compared motion judgments in the two-di-
mensional frontoparallel plane (at constant depth) with hue 
judgments in the two-dimensional chromatic plane (at constant 
luminance) using functionally equivalent psychophysical tasks. 
Measurements from these tasks show that for both stimulus 
attributes, there are large and systematic differences in how 
observers judge directions in the plane, and analyses of these 
differences point to fundamentally different principles for their 
perceptual representation.

Results

Perceptual Judgments of Hue and Motion Direction. To 
measure judgments of hue, 46 observers completed a hue-scaling 
task (Experiment 1) in which they described each stimulus by 
decomposing the perceived hue into percentages of each primary 
hue (red, green, blue, and yellow) for a total of 100% (e.g., 
describing an orange hue as a proportion of red and yellow) 
(Fig. 1B). Since this task was developed, it has become a standard 
method for measuring hue percepts (27). On each trial the 
chromatic angle of the stimulus was chosen pseudorandomly from 
36 possible stimulus directions created by sampling the L vs. M 
and S vs. LM cone-opponent plane at 10°  intervals (Fig. 1C). 
Again, these axes correspond to the cardinal directions underlying 
color coding at early postreceptoral stages. The stimulus was 
presented as a pulsing (0.5 s on/1 s off) uniform square subtending 
2° of visual angle that continued until the observer entered their 
response. Four trials were presented for each stimulus angle.

To measure judgments of motion direction in an analogous 
way, we designed a motion-scaling task (Experiment 2). An inde-
pendent set of 48 observers participated in motion scaling in 
which they described the motion direction of an array of moving 
dots using percentages of the four primaries (up, down, left, and 
right) for a total of 100% (Fig. 1B). On each trial, the motion 
stimulus was again chosen pseudorandomly from the 36 corre-
sponding directions (Fig. 1C) and presented as a pulsing (0.5 s 
on/1 s off) circular array of moving dots within a 2° circular visual 
field, that again continued to pulse until a response was made. 
Four trials were presented for each stimulus angle.

To calculate the scaling function for each observer, the percent-
ages assigned to each stimulus angle were converted into a per-
ceived angle within a 2D space with cardinal axes defined by the 
primaries of each task (Fig. 1D). For example, if the stimulus was 
scaled as appearing 50% red and 50% blue, then this corresponded 
to a perceived angle of 45° in the red–green (0 to 180°) and blue–
yellow (90 to 270°) perceptual plane. Thus, the scaling function 
represented the perceived angle as a function of the stimulus angle, 
and for each observer was calculated based on the mean of their 
four responses (Fig. 2A).

To verify that for each task that the differences between observers 
were significant (22), we compared the magnitude of the inter- and 
intraobserver variability, after arcsine-transforming the scaling func-
tions to normalize the variance. The within-observer variability was 
similar for both tasks, with an average SD of roughly 5°. One-sided 
Mann–Whitney U tests confirmed that SDs across mean settings 
between observers were larger than SDs across trials within observ-
ers for both the hue- [Z (46) = −7.27, P < 0.001] and motion- [Z 
(48) = −4.99, P < 0.001] scaling tasks (Fig. 2B). On average, the 
variability between subjects was 2.8 (hue) or 2.1 (motion) times 
greater than the within-subject variation. We further confirmed 
significant test–retest reliability [Spearman’s rank-order correlation: 
ρ(1,654) = 0.52, P < 0.001; ρ(1,726) = 0.42, P < 0.001], and 
split-half reliability [ρ(1,654) = 0.63, P < 0.001; ρ(1,726) = 0.99, 
P < 0.001] for hue and motion, respectively. These analyses suggest 
that the individual differences in the data are not due to only noise 
across trials or measurements in the scaling tasks, and might instead 
reflect systematic differences in how observers rate the perception 
of these stimulus attributes.

Simple comparisons of the hue- and motion-scaling data show 
distinct patterns of responses between the tasks. For example, the 
SDs (calculated on arcsine-transformed percentages) as a function 
of stimulus angle showed stronger evidence for privileged or unique 
directions in motion scaling, revealed by stimulus angles where 
there is little variability across observers (Fig. 2B). For motion, D
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these privileged directions aligned with the cardinal axes. For hue, 
these privileged directions corresponded with typical red, blue, 
green, and yellow loci. However, the SDs for these primary hues 
are higher than those for the primary axes for motion, and did not 
always reflect the minima in the observer differences (e.g., there is 
greater inter-observer agreement for purple than red). These dif-
ferences therefore provide stronger evidence for privileged direc-
tions in motion percepts than hue percepts.

A more dramatic difference is evident in the correlation matri-
ces for the two datasets (Fig. 2C). For hue, the responses to dif-
ferent stimulus angles primarily showed only positive correlations 
and only for nearby angles, along the diagonal of the matrix. In 
contrast, for motion there were consistent positive and negative 
correlations among both near and widely separated angles. The 
robust correlation structures for both datasets indicated fewer, 
latent variables influencing observers’ responses. In the following 
analyses, we used factor analysis to reveal these latent sources of 
variability for each task (23, 28, 29). Factor analysis is a standard 
statistical procedure for extracting the patterns of variation under-
lying an observed set of measurements. The basic premise is that 
correlated observations reflect the influence of one or more com-
mon factors, while uncorrelated observations depend on different 
factors. From this analysis, we could therefore compare the 

number and nature of the processes underlying hue and motion 
direction judgments and what these might imply about the per-
ceptual representations of these attributes.

Many Factors Spanning Different Local Regions of the Hue Circle 
Underlie Individual Differences in Hue Judgments. The factor 
analysis of hue-scaling functions revealed nine systematic factors 
(defined empirically as factors with significant loadings on two 
or more adjacent items, suggesting they represent meaningful 
variation and not noise, see Methods: Systematic Loadings for 
more information). Each of these factors had high loadings for 
a narrow range of stimulus angles and with loadings of the same 
sign (Fig. 3A). The loadings for these factors across stimulus angle 
thus showed a single peak and could be reasonably approximated 
by a simple Gaussian (SI Appendix, Table S2). Other common 
methods for determining the factor solution suggested similar 
results (SI Appendix, Table S1 and Fig. S1). Together, the nine 
factors accounted for 76% of the total variance and much of the 
correlation structure, as evidenced by the lack of variance magnitude 
and structure in the residual matrix (SI Appendix, Fig. S2).  
These factors are similar in number and nature to those revealed in 
previous analyses of hue-scaling functions based on a smaller sample 
of observers (17, 21) suggesting that this factor pattern is robust. 

tan-1[(up-down)/(left-right)]

Feature spaces: Color vs. Motion
A

Lightness axis

Red-Green axis

Blue-Yellow axis

ϴ

Up-Down axis

Depth axis

Left-Right axis

ϴ

Stimuli: Stimulus angle
2D planes sampled at 10° steps

C

L/M

S/(L+M)

Fixed contrast:  
60 (vector length)
Fixed luminance:

20 cd/m2

Coherency:  
100%

Fixed speed:
4°/second

L-R

U-D Response: Perceived angle
D

Green 
(180°)

Blue (90°)Response
B:50  G:50 = 135°

tan-1[(blue-yellow)/(green-red)]

Red 
(0°)

Yellow (270°)

Left 
(180°)

Up (90°)Response
U:50  L:50 = 135°

Right 
(0°)

Down (270°)

R:  50   G: 0   B: 50   Y: 0

2⁰ uniform field,
Stimulus pulses (0.5s 

on 1s off) until response

U: 50  D: 0  L: 50  R: 0

Task: Scaling
B

2⁰ array of moving dots,
Stimulus pulses (0.5s 

on 1s off) until response

Instructions: “Describe your perception of the stimulus 
using percentages of the primaries.”

Fig. 1. Experimental design. (A) The feature spaces for color (Left) and motion (Right) share a dimensional structure in which three fundamental, opponent, 
perceptual axes are sufficient to fully define the stimuli. (B) To reveal whether color and motion percepts are also coded by common principles, we measured 
observers’ judgments of color and motion using analogous scaling tasks. For this task, observers are instructed to describe each stimulus as a combination of 
the primaries (color: Red, Green, Blue, and Yellow; motion: Right, Up, Left, and Down). They assigned percentages to the primaries to report the combination that 
aligned with their percept. For hue scaling, on each trial the observer was presented with a 2° uniform square of color that pulsed continuously (0.5 s on/1 s 
off) until their response was made. For motion scaling, on each trial the observer was presented with a 2° circular array of randomly distributed moving dots 
that again pulsed continuously (0.5 s on/1 s off) until their response was made. (C) The stimulus presented for each trial was chosen randomly from 36 possible 
directions for either color or motion. For color, these 36 directions were defined by sampling the circumference of a circle of fixed contrast and luminance in the 
LvsM and SvsLM chromatic plane at 10° steps. For motion, the 36 directions were defined by sampling the circumference of a circle of fixed velocity and depth 
at 10° steps in the frontoparallel plane. The array of dots moved 100% coherently at a fixed speed in the chosen direction on each trial. Observers scaled each 
of the 36 angles four times. Independent groups of observers completed the hue and motion scaling tasks. (D) The response for each stimulus angle was then 
converted to a perceived angle for subsequent analyses. A perceived angle corresponds to the angle within the perceptual space used to scale the stimuli (i.e., 
Red-Green and Blue-Yellow axes, or Left–Right and Up–Down axes). Response of 50% Blue and 50% Green, or 50% Up and 50% Left, would therefore correspond to a 
perceived angle of 135°. A scaling function was calculated for each observer, which defined the mean perceived angle at each stimulus angle for each observer.
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An independent components analysis of the hue-scaling functions 
also revealed similar processes (SI Appendix, Fig. S3). The large 
number of narrow factors is inconsistent with variability in a small 
number of canonical primary hues, while the unimodal loadings 
are inconsistent with an opponent representation (which would 
predict a bipolar pattern of loadings). Thus, in contrast to the two 
chromatic dimensions assumed by classic color-opponent theory, 
these results point to a representation with limited evidence for 
privileged axes and no direct evidence for opponent axes.

To visualize the relation between this observed pattern and the 
pattern predicted from different models of color appearance, we 
calculated the predicted correlation matrices for scaling functions 

based on simulated sources of individual variability (Fig. 4). These 
sources of variability included two broadly varying bipolar axes (i.e., 
a conventional opponent code), four broadly varying unipolar pro-
cesses (i.e., a rectified opponent code so that “red”, “green”, “blue”, 
and “yellow” could vary independently), and eight more narrow-
band or localized processes (so that each process spanned a narrow 
range of chromatic angles). For each case, we randomly varied the 
peak angle and sensitivity of each process and then constructed the 
corresponding hue-scaling functions from their combined 
responses. Comparisons of these matrices to the observed correla-
tions in Fig. 2C show that for hue the pattern of variability is qual-
itatively similar to the model with eight localized sources of 
variability, while different from the opponent or rectified-opponent 
models. In particular, the opponent model predicts both positive 
and negative correlations (since for example, “red” and “green” are 
negatively correlated), which are not evident in the observed pat-
tern. The rectified-opponent model also fails because the “red” or 
“green” processes, etc., are too broad in their bandwidth to account 
for the more localized correlations in the observed matrix. Thus, 
even though observers were required to decompose the hue in terms 
of “red–green” and “blue–yellow” responses, these primaries do not 
emerge as the source of individual differences in the hue judgments. 
Adding additional sources of variability to the models (e.g., non-
linearities in the responses or categorical biases) similarly fail to 
account for the narrow, localized factors that emerge for hue scaling 
(17). Instead, the observed factors show that different narrow hue 
regions vary largely independently, suggesting that they are not tied 
to a common underlying variation in a set of perceptual primaries. 
Finally, note that it is the narrow range of each process, and not 
the number of processes, that predicts the narrow range of the 
observed factors. That is, replacing the eight discrete processes with 
a continuum (e.g., many processes with peaks spaced evenly along 
the spectrum and equal bandwidths) would lead to less discrete 
clustering in the correlations, but would retain the narrow, localized 
pattern of the correlations.

We next examined the possible basis for the hue-scaling factors. 
One possibility we considered is that the eight factors might 
reflect variations in how observers represent hues in terms of eight 
hue categories (the four pure hues (e.g., red) and the four binary 
hues (e.g., orange)). In this case, the factors could capture differ-
ences in the focal stimuli (e.g., 100% red or 100% orange), or 
in the boundaries between them (e.g., 50% red and 50% orange). 
We estimated these foci and boundaries directly from the 
observed hue-scaling functions. For example, a perceived angle 
of 0° corresponds with pure red, while a perceived angle of 45° 
corresponds with the boundary between red and blue. We then 
examined how observers’ hue categories were related to their 
scores on each factor. Factor scores indicate the contribution of 
the latent factors to each observer’s hue-scaling responses, and 
therefore determining the variables with which these scores are 
correlated can help identify the underlying processes (29). Using 
nearest-neighbor interpolation, we directly estimated the stimu-
lus angles corresponding to 16 different perceptual angles in the 
observers’ hue-scaling functions, sampling the perceptual space 
in steps of 22.5° to estimate the loci and boundaries between 
primary (red, green, blue, and yellow) and binary hues (orange, 
purple, blue–green, and yellow–green). We estimated factor 
scores using Thurstone’s (29) least squares regression approach, 
which is recommended for use with PC factor analysis methods 
(28). Spearman’s rank-order correlations between observers’ set-
tings for the loci and boundaries and the factor scores suggest a 
stronger relationship between the factors and the category bound-
aries than the category exemplars (Fig. 3B). Specifically, except 
for factor 1 and red, none of the other factors align with the foci 

A

C

B

Fig. 2. Comparisons of the pattern of individual differences in hue- (Left) and 
motion- (Right) scaling functions. (A) Scaling functions are plotted for 46 and 48 
observers for the hue- and motion- scaling tasks, respectively (colored lines 
show the scaling function for each observer). The mean scaling function for 
each task is indicated in black. Horizontal lines indicate the primaries for each 
task, which correspond to the cardinal directions of the perceived angles. (B) In 
order to validate the individual differences, we compared the magnitude of the 
SD in settings within an observer across trials and between observers for each 
stimulus angle. The SDs were computed on the arcsine-transformed scaling 
data to correct for variance compression at the extremes. Solid lines indicate 
the SD between observers and the dotted line the average SD within observers 
across trials. Error bars represent +/-1 SEM, and could only be calculated 
for the values within observers. Ratios above the plots correspond to the 
ratio of the SD between observers to the average SD within. These values 
suggest that the individual differences in these data cannot be attributed 
to measurement variability across trials. (C) The correlation structure in the 
responses between tasks.
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for the primary or binary hues. Rather they are generally associ-
ated with the boundaries between primary and binary hues 
(Fig. 3B). These analyses thus suggest that the individual differ-
ences in hue scaling are primarily around the angles where observ-
ers demarcate the boundaries between different color categories 
rather than at the category exemplars themselves. This finding 
aligns with research showing less agreement in the color terms 
assigned to category boundaries than category centers  
(30, 31). That the highest correlations between the factor scores 
and scaling responses lie at the boundaries between primary and 
binary categories further suggests that a representation in terms 
of underlying principal hue axes is not sufficient to account for 
individual differences in hue-scaling judgments.

In addition to exploring the relation of the factors to different 
color categories, we tested for evidence of “categorical coding” by 
directly assessing the hue-scaling functions. This coding predicts 
that the reported hues of two stimuli that both fall within a 

category should be more similar than between two stimuli that 
instead fall in different categories and predicts that the hue-scaling 
functions should exhibit discrete, step-like changes between cat-
egories rather than smooth variation (32). We estimated the degree 
of categorical bias exhibited by each observer by fitting a weighted 
average of a linear and step function to their scaling function (32). 
However, this revealed relatively weak categorical biases in the 
settings, with the degree of the bias largely uncorrelated across the 
different hue categories (SI Appendix, Fig. S9). Thus, although the 
factors tended to align with color category boundaries, percepts 
varied more continuously than they did categorically, suggesting 
only a slight influence of categorical coding.

A Small Number of Broad, “Opponent-Like” Factors Underlie 
Individual Differences in Motion Judgments. We applied the same 
set of analyses to the motion-scaling functions to determine the 
underlying representational structure for motion percepts. The 

A

Fig. 3. A factor analysis of hue-scaling functions revealed many processes that 
accounted for the variance for narrow regions of color space. (A) The factor model 
for color consisted of nine systematic (see Methods) factors, which together 
accounted for 76% of the total variance. Panels show the loadings for individual 
factors and the correlation structure of the original data accounted for by each 
factor (estimated by L

f
L
�

f

+ U
f
, where L is the matrix of factor loadings and U is 

the matrix of uniqueness). Each factor loading plot shows the value of the factor 
loading (radius), which represents the proportion of variance in the responses 
to each stimulus accounted for by each factor (a light gray line indicates a radius 
or loading of zero in each plot for reference of the neutral point). The factors are 
colored to indicate the hue category corresponding to the maximum loading. The 
black dotted line in each factor plot corresponds to the best-fitting Gaussian for 
that factor, with the peak and bandwidth as reported above each plot. The total 
variance accounted for is also reported for each factor. (B) The scores for each 
factor were then analyzed to identify the process defined by each factor. Category 
loci and boundaries inferred by nearest-neighbor interpolation were correlated 
with the factor scores in order to determine their relationship. The polar plot 
shows that the observers’ category boundaries are more strongly correlated with 
the factors than the loci themselves (starred comparisons indicate significant 
correlations (P < 0.05, after correction for multiple comparisons)).
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factor analysis of motion-scaling functions revealed three systematic 
factors that were each periodic and therefore qualitatively different 
from the unimodal factors observed for hue (Fig.  5A). Other 
common methods for determining an adequate number of factors 
suggested similar results (SI Appendix, Table S1 and Fig. S4). 
Together, the three factors accounted for 52% of the total variance 
and much of the important correlation structure, as evidenced by 
the lack of variance magnitude and structure in the residual matrix 
(SI Appendix, Fig. S5). An independent components analysis of 
the motion-scaling functions also revealed a similar component 
pattern (SI Appendix, Fig. S6). Given the lower amount of variance 
accounted for by systematic factors for the motion compared with 
the hue factor model, we also explored a nine-factor model for 
the motion-scaling data to understand whether the additional 
factors were meaningful and similar to those for hue. The nine-
factor model for motion accounted for 76% of the total variance 
and revealed that the additional factors were extremely narrow, 
with high loadings near the cardinal axes (SI Appendix, Fig. S7).  
[They, therefore, did not meet the “systematic” criterion of 
consistent loadings across adjacent angles for inclusion in the 
initial analysis, but could nevertheless reflect meaningful sources 
of interobserver variation (i.e., not just measurement noise).] 
The overall factor pattern for motion is thus very distinct from 
that for hue. In particular, unlike the multiple localized factors 
mediating differences in hue judgments, the pattern of individual 
differences in motion percepts was consistent with a code in terms 
of global, cyclical processes. This correspondence for motion can 
be seen by the qualitative similarities between the correlation 
matrix predicted by the opponent-process model (Fig. 4) and the 
observed correlation matrix for the motion (Fig. 2C).

We again examined the processes to which the motion factors 
might correspond. In this case, we approximated the factor load-
ings by fitting a sawtooth function to characterize the phase and 
frequency for each factor (Fig. 5A). (Because of asymmetries in 
the loadings, a sawtooth provided a better fit than a sinewave 
variation; see SI Appendix, Table S3). The phase and frequency of 
the best-fitting sawtooth wave for each factor is shown in Fig. 5A. 

Based on these values, the factors corresponded to variations in 
judgments of motion directions that were intermediate to the ver-
tical and horizontal axes. The first two factors had a frequency of 
one cycle (per 360°) and peak loadings near 60° to 240° (Factor 
1), or 30° to 210° (Factor 2). The third factor instead had a fre-
quency of two cycles, again peaking at intermediate angles.

One possibility we considered was that all three factors in fact 
reflected the special status of the horizontal and vertical axes but 
depended on individual variations in the relative salience or sen-
sitivity to these cardinal directions. Note this predicts that the 
factors should have the strongest loadings for off-axis directions 
(reflecting individual differences in the relative weights given to 
the vertical vs. horizontal components), while weakest loadings 
for the cardinal axes (where the motion depends on only the hori-
zontal or vertical component). This pattern is consistent with the 
markedly lower interobserver variations in motion scaling for the 
horizontal and vertical compared with intermediate axes (Fig. 2B), 
and with the finding noted above that the variations along the 
cardinal axes showed up as additional, narrowly-tuned factors 
accounting for less variance (SI Appendix, Fig. S7). Thus, while 
such factors are not aligned with the cardinal axes, they would 
nevertheless reflect variations that are tied to these axes. To formally 
assess this, we computed the relative amplitude between the hori-
zontal and vertical components of each observer’s motion-scaling 
function (SI Appendix, Fig. S8). Horizontal/vertical ratios across 
participants revealed a general trend consistent with decreased 
scaling for the horizontal axis relative to the vertical axis [as doc-
umented in many previous studies (33)], with considerable indi-
vidual differences in the magnitude of this bias (mean = 2.22, SD 
= 1.67) (SI Appendix, Fig. S8). To examine whether this asymmetry 
was the basis for the first two factors, we computed a knock-out 
of this horizontal/vertical bias by equating the amplitude of the 
horizontal and vertical components of each observer’s scaling func-
tion. We then factor-analyzed the scaling functions after this cor-
rection, revealing a solution where the first two factors had now 
dropped out (SI Appendix, Fig. S8). These results suggest that 
individual differences in the relative weights that observers assign 

Fig. 4. Hypothetical models and correlation matrices for simulated sources of individual variability in hue scaling. Upper plots show hypothetical opponent 
(Left), broadband (Middle), or narrowband (Right) processes. Each process was independently varied in peak angle and magnitude. The corresponding hue-scaling 
functions were derived by combining the responses across processes perturbed with Gaussian noise similar in magnitude to the observed within-observer 
variability. Lower plots show the resulting correlations across stimulus angles calculated from the simulated variations in hue-scaling functions predicted by 
each model.
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to the horizontal and vertical cardinal axes account for much of 
the variability in motion direction judgments (SI Appendix, Fig. 
S8). (Factors with a similar pattern of loadings were not observed 
for hue, and when a similar knock-out analysis was applied to the 
hue-scaling functions, it did not lead to a clearly interpretable 
result; SI Appendix, Fig. S8). The third factor for motion (which 
again had twice the frequency of variation as the first two factors) 
survived the knockout. However, this factor could also reflect var-
iations relative to horizontal and vertical, if it corresponded to 
variations in the degree of bias toward the cardinal axes (e.g., in 
the tendency to overweight the contribution of the nearest cardinal 
direction to the perceived motion). However, additional modeling 
would be required to verify whether this bias aligned with this 
factor.

Finally, as with the hue analyses, we also investigated the extent 
to which the motion factor scores corresponded with category 
boundaries or foci. Again, using nearest-neighbor interpolation, we 
directly estimated the stimulus foci from the mean motion-scaling 
function of each observer for the same sixteen perceptual angles, 
sampling the underlying perceptual space in steps of 22.5°. We then 
estimated the factor scores using the same procedure reported above. 
Categorical biases in this case were again weak (and significantly 
weaker than for hue; SI Appendix, Fig. S9). In contrast to hue, 
Spearman’s rank-order correlations between observers’ settings for 
the loci and boundaries and the factor scores suggested a stronger 
relationship between the motion factors and settings at the prima-
ries and their boundaries (Fig. 5C). Specifically, settings for the 
vertical axis and the boundaries nearest to and clockwise from it 
correlate significantly with the scores for the first factor, and settings 
for the horizontal axis and boundaries nearest to and clockwise from 

it correlate significantly with the scores for the second factor. These 
analyses further suggest that the motion factor pattern depends on 
latent processes related to the cardinal axes of visual space, further 
distinguishing the pattern of responses for motion and hue.

Discussion

Our analyses reveal that, while the coordinates for all colors or 
motions can be described in three-dimensional spaces, the per-
ceptual representations of the attributes of hue and motion direc-
tion are fundamentally distinct. Moreover, these differences 
emerged using similar perceptual judgments and analyses. This is 
important, because it supports the conclusion that the patterns of 
individual differences revealed for hue or motion direction per-
cepts are not simply a property of the experimental task or analyses 
used to assess them, but instead reflect actual differences in their 
visual representations.

In this study, we did not extend the comparison of color and 
motion coding to their full three-dimensional gamut. There is 
some evidence to suggest broad tuning along the third dimension 
of color, brightness (8, 10, 34), with the potential for new color 
categories to emerge as this dimension is modulated (e.g., between 
luminance increments and decrements) (35); and though the cod-
ing principles in the context of the third dimension of visual 
motion (depth), are quite complicated, there is some suggested 
evidence for a representation that references spatial geometry, espe-
cially in the context of actions such as accurate object tracking and 
interaction (36, 37). However, this evidence does not come directly 
from the psychophysical scaling tasks used here, and we suggest 
that extending the reported analyses to all three dimensions is an 

A

Fig. 5. A factor analysis of motion-scaling functions revealed that periodic 
factors associated with the cardinal axes underlie the variability in motion 
judgments. (A) Panels show the loadings for individual factors and the 
correlation structure of the original data accounted for by each factor 
(estimated by L

f
L
�

f

+ U
f
, where L is the matrix of factor loadings and U is the 

matrix of uniqueness). Each factor loading plot shows the value of the factor 
loading at each stimulus angle for each of the three factors (with the gray 
line at a radius of zero serving as a reference for a neutral loading). The black 
dotted line in each factor plot corresponds with the best Sawtooth fit for that 
factor, and its corresponding phase (ϕ) and frequency (f) are reported to 
the Left of each plot. The total variance accounted for by each factor is also 
shown. (B) Correlations between settings for category loci and boundaries 
and factor scores illustrate that the first factor is correlated with vertical 
settings and their clockwise boundaries, while the second factor is correlated 
with horizontal settings and their clockwise boundaries [red asterisks indicate 
significant correlations (P < 0.05, after correction for multiple comparisons)].
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important future direction for a comprehensive comparison of the 
perceptual representations underlying these visual features.

For the two-dimensional coordinate frames we examined, the 
response patterns for hue reflected multiple, relatively local pro-
cesses with no direct evidence for opponent axes or a small set of 
(four) perceptual primaries, corroborating previous hue-scaling 
studies (17, 21). Moreover, there was little evidence for a super-
ordinate status for certain hues. The interobserver variance in the 
settings did tend to be lower for the primaries. However, this status 
itself may not reflect a special representation for red–green and 
blue–yellow since these hues were the constructs used to scale the 
stimuli, and previous research suggests that this difference in var-
iability is not present under a different task (18). It would be 
instructive in future studies to determine if the pattern of variation 
would change if a different set of primaries, for example corre-
sponding to the binary hues (19), were used to rate the stimuli.

For motion direction, the response patterns instead depended 
on three latent processes with broader and more global influences 
on the settings. These primarily captured the large interobserver 
variations at angles intermediate to the cardinal directions but were 
consistent with variations in the weights given to the cardinal axes, 
and thus to a representation associated with them (Fig. 4). 
Moreover, the factor scores for motion were more clearly associated 
with the cardinal axes and the boundaries between them, again 
pointing to an underlying representation based on a privileged pair 
of axes. Thus, judgments about the direction of stimuli within the 
two “spaces” appeared to draw on very different representations.

Where do these differences in representation emerge? One possi-
bility is that they reflect differences in how hue and motion are 
encoded by the visual system. However, this leads to the paradox that 
the variability in scaling does not reveal opponent processing for hue, 
while for motion it does. Moreover, this interpretation is inconsistent 
with the functional similarities between the early cortical representa-
tion of color and motion. Like many other visual attributes, at this 
level cells show preferences for a wide variety of chromatic angles (38) 
or motion directions (39), suggesting a common representational 
format in terms of a multiple-channel or population code (40). Given 
these analogous encoding schemes, it is reasonable to assume that the 
factors found are not directly associated with the tuning or number 
of encoding mechanisms. Instead, the different factor patterns for hue 
and motion may be more closely related to how information from 
the population responses is decoded. The multiple, narrow factors for 
hue might suggest that the decoding is without obvious reference to 
an underlying coordinate frame, potentially so that hues are repre-
sented more like qualitatively different objects than quantitatively 
different directions. This might be related to the finding that it can 
be difficult to intuit the coordinate relationships between different 
colors (e.g., which colors are complementary or orthogonal (15)), and 
to the way we communicate about color using several basic color terms 
(41). For motion, the factor pattern is instead consistent with a decod-
ing that seemingly preserves information in terms of an underlying 
reference frame. This might be reflected in that, for motion, it seems 
more intuitive to compute the coordinate relationships between dif-
ferent trajectories or points in space, that perceptual errors are often 
biased toward the cardinal axes (42, 43), and that, unlike color, we 
often communicate about different motion directions with terms 
referenced to the cardinal axes (e.g., upper left, or north-northwest).

Why are the decoded representations for hue and motion 
direction different? As noted in the Introduction, the basis for 
the common perceptual dimensionality of these attributes is dis-
tinct. For motion it may be associated with the geometry of 
physical space (or alternatively, with prominent features of visual 
space such as the vertical axis of gravity and a horizontal ground 
plane). In contrast, for hue it derives from comparisons of the 

three samples for spectral stimuli provided by the cones (with 
both hue and motion direction also influenced by the stimulus 
context). Thus, unlike perceptual color space, perceptual motion 
space has external validity, at least as far as how the observer 
interacts with it. For example, for spatial navigation and action, 
it is arguably critical to sense and interpret the spatial information 
meditated by vision, for example, to reach out to the location 
one sees. In contrast, for attributes like hue, there is not a corre-
sponding ground truth in what is red, nor is there evidence that 
one is necessary as long as the percepts convey consistent infor-
mation. While we have focused only on hue and motion direc-
tion, it would be valuable in future work to assess whether these 
differences reflect more general strategies for how information is 
used within visual processing streams for carrying inherently 
spatial vs. nonspatial information. In any case, our results suggest 
that conventional models of color appearance, based on an under-
lying pair of primary hue dimensions, may provide a poor 
account of the actual perceptual representation of hue.

Methods

Participants. The observers included 46 (30 females and 16 males; mean age 
± SD = 22.87 ± 5.01 y) and 48 (32 females and 16 males; mean age ± SD = 
24.5 ± 6.75 y) undergraduate and graduate students at the University of Nevada, 
Reno (UNR), for the color and motion experiments, respectively (with independent 
groups of observers tested for the two experiments). Data from 26 of the partici-
pants in Experiment 1 are from Emery et al. (17). Data from two and four additional 
observers were excluded for the color and motion experiments, respectively, due to 
inconsistencies in their settings across trials (see Methods: Data Preprocessing). All 
procedures followed protocols approved by UNR’s Institutional Review Board, and 
participation was with written informed consent, with students offered course extra 
credit for their participation. The observers were screened for self-reported normal 
or corrected-to-normal vision, and for the color experiments were screened for nor-
mal color vision using the Cambridge Colour Test (Cambridge Research Systems).

Color Apparatus and Stimuli. Stimuli were presented on a SONY Multiscan 
Trinitron 500PS CRT monitor controlled by a Cambridge Research System ViSaGe 
MKII Stimulus Generator, providing 12-bit resolution per gun. The monitor was 
calibrated with a Photo Research 655 spectroradiometer and gun outputs were 
linearized via gamma correction. The stimuli and background were presented at 
a constant luminance of 20 cd/m2. The gray (Illuminant C, CIE x: 0.31, y: 0.316) 
background filled the (41.5 × 31.5 cm) monitor screen, subtending 11.7° × 9° 
of visual angle. The test chromaticities were based on a variant of the MacLeod–
Boynton (44) chromaticity diagram, scaled to equate sensitivity along the L vs. 
M and S vs. LM axes based on chromatic thresholds (45):

L vs. M =

(

lmb − 0.6568
)

∗ 2,754,

 

S vs. LM =

(

smb − 0.01825
)

∗ 4,099.

L vs. M and S vs. LM are the cardinal axes of the underlying chromatic, 
cone-contrast space. The variables lmb and smb are the l  and s (or r  and b) coor-
dinates in MacLeod–Boynton space, and their contrasts are relative to the chosen 
achromatic point in the space (0.6568, 0.01825, the MacLeod–Boynton coordi-
nates for Illuminant C), which are then scaled to approximate equal multiples of 
threshold. (Note that compared with motion, this scaling for color is somewhat 
arbitrary, and cannot be equated directly to the strength of the motion stimuli. 
Changing the scaling would change the relationship between hue and stimu-
lus angle but would not change the general pattern of the correlations in hue 
percepts across stimulus angles. There are also a number of other ways that we 
could not formally equate the motion and color stimuli, e.g., one is dynamic 
while the other static.)

Stimuli within this space were defined by a vector with a direction correspond-
ing to the chromatic angle and a length corresponding to chromatic contrast. 
Thirty-six test chromaticities were defined by sampling the space at 10° steps from D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 U

N
IV

 O
F 

N
E

V
A

D
A

 R
E

N
O

 S
C

H
L

 M
E

D
 o

n 
Ja

nu
ar

y 
27

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
13

4.
19

7.
68

.1
76

.



PNAS  2023  Vol. 120  No. 4  e2202262120 https://doi.org/10.1073/pnas.2202262120   9 of 11

10 to 360° at a fixed contrast of 60 (Fig. 1C). Each chromaticity was presented 
foveally as a 2° uniform square pulsing for 0.5 s, with a 1s return to the gray 
background between each pulse. For each trial, the same stimulus was repeated 
until the observer made their setting. Observers viewed the display binocularly 
in an otherwise dark room from 200 cm.

Hue-Scaling Task and Procedure. In the hue-scaling task, observers were 
instructed to report their perception of the presented hue as a percentage of 
red, green, blue, or yellow in increments of 5% (17). Observers were instructed 
that the sum of their assigned percentages must equal 100% with the constraint 
that red and green could not be used simultaneously to describe a hue, nor blue 
and yellow (46). These hue terms are rarely paired together when observers are 
free to do so (47), reflecting the common notion that the opponent pairs represent 
mutually exclusive sensations.

Perceived angles were calculated for each response by converting the per-
centages to an angle in a red–green (0 to 180°) and blue–yellow (90 to 270°) 
perceptual space (Fig. 1) by the following formula (16, 17):

Perceived angle= tan−1

(
(

blue−yellow
)

(red−green)

)

.

For example, if an observer responded that a stimulus appeared 50% blue and 
50% green, this would correspond to an angle of 135° in this space, or an equally 
balanced blue–green hue. The perceptual angles rather than the percentages 
were used for subsequent analyses.

Observers participated in two sessions of hue scaling. Within each session, the 
36 stimulus angles were presented two times in a pseudo-random order for a total 
of four trials per stimulus angle. Each session lasted less than one hour, and the 
two sessions were completed on separate days within a week. On the first day and 
before starting the experiment, observers completed a set of practice trials with the 
experimenter to ensure they understood the task. There were twelve practice trials 
which consisted of scaling six stimulus angles twice (sampling the color space in 
60° steps from 12 to 252° to ensure no colors in the practice set were included in 
the experiment). Following the practice trials, observers adapted to the monitor 
background in the otherwise dark room for 1 min before starting the first trial of 
the experiment. On each trial, the stimulus continued to pulse until the observer 
entered their response, at which point the next stimulus angle was presented. 
Between each of the two blocks within each session (each block consisted of the 
full set of 36 stimulus angles), the observer was presented with a gray intermission 
screen and pressed a key when they were ready to begin the next block.

Motion Stimuli and Apparatus. Stimuli were presented on an identical cali-
brated monitor, with a black, circular frame placed in front to remove horizontal 
and vertical edge information from the screen (Fig. 1B). A gray background with 
a luminance of 20 cd/m2 was presented on the monitor and viewed through the 
screen aperture which subtended 9° of visual angle. Each stimulus was a circular 
array of moving dots subtending 2° of visual angle presented foveally and in the 
center of the background (Fig. 1B). The array consisted of 100 white dots, with 
each subtending 0.1° of visual angle, and distributed randomly within the circu-
lar aperture at the initialization of each trial. On each trial, the dots moved 100% 
coherently in one of 36 test directions corresponding to angles at 10° steps in 
the frontoparallel plane. Dot density remained constant during the presentation, 
consistent with viewing a uniform array through a 2° aperture. (Fig. 1). The dots 
moved along the chosen direction at a fixed speed of 4° per second for 0.5 s, with 
a 1 s return to the gray background between each presentation. During a trial, the 
same stimulus was repeated until the observer completed their setting. Observers 
viewed the display binocularly in an otherwise dark room from a distance of 200 cm.

Motion-Scaling Task and Procedure. For the motion-scaling task, observers 
were instructed to report the perceived motion direction as a percentage of up, 
down, left, or right. Responses could be varied in increments of 5%, and observers 
were instructed that the sum of their assigned percentages must equal 100%. 
We again added the limitation that right and left are mutually exclusive, as are 
up and down. Perceived angles were calculated for each response using a pro-
cedure analogous to hue scaling, by converting the percentages to an angle in 

a right–left (0 to 180°) and up–down (90 to 270°) perceptual space (Fig. 1) by 
the following formula:

Perceived angle = tan−1

(
(

up − down
)

(right − left)

)

.

Therefore, if an observer responded that a hue appeared 50% up and 50% 
left, this would correspond to an angle of 135° in this space. The perceived angles 
rather than the percentages were used for subsequent analyses.

As in hue scaling, observers participated in two sessions of motion scal-
ing. Within each session, the 36 stimulus angles were presented two times 
in a pseudo-random order for a total of four trials per stimulus angle. Each 
session lasted less than one hour and the two sessions were completed on 
separate days within a week. On the first day and before starting the exper-
iment, observers completed a set of practice trials with the experimenter to 
ensure they understood the task. There were 12 practice trials which consisted 
of scaling six angles twice (sampling the motion space in 60° steps from 12 
to 252° to ensure no motion directions in the practice were included in the 
experiment). Following the practice trials, observers adapted to the background 
in an otherwise dark room for one minute before starting the first trial of the 
experiment session. On each trial, the stimulus continued to pulse until the 
observer responded, at which point the next randomly chosen direction was 
presented. Between each of the two blocks within each session (each block 
consisted of the full set of 36 stimulus angles), the observer was presented 
with a gray intermission screen and pressed a button to initiate the second 
block of trials when they were ready.

Data Preprocessing. We performed the same preprocessing procedure on 
both the hue- and motion- scaling datasets. We first excluded outlying trials 
by stimulus angle for each observer. We used a jackknife technique to detect 
outliers. This technique consisted of computing the mean and SD for each 
possible group of three trials. We then determined whether for the closest 
cluster of three trials (i.e., the cluster with the smallest SD) the fourth trial 
was more than 3 SDs away from the mean of that cluster. In that case, the 
fourth trial would be excluded from subsequent analyses. Otherwise, all trials 
were included. Of the total trials, 14% were excluded by this criterion for both 
the hue scaling and motion scaling. We then applied criteria for excluding 
observers with responses across trials deemed inconsistent. We determined 
the threshold for exclusion by calculating each observer’s average response 
SD across trials and excluding the full dataset for any observer whose aver-
age SD across trials exceeded the average SD across trials for the group by 
3 SDs. By this criterion, none of the observers’ hue-scaling functions were 
excluded, while one observer’s motion-scaling function was excluded. Lastly, 
given that subsequent analyses were performed on the mean scaling func-
tions (i.e., averaging across trials for each observer), we excluded outlying 
points across the group by each stimulus angle. We determined the threshold 
of exclusion at each stimulus angle as any response that was more than 4 
SDs away from the mean response at each stimulus angle. We used a more 
inclusive criterion for this case to avoid missing data. By this criterion, 0.5% of 
points were excluded from the group of mean hue-scaling functions, and 0.7% 
of points were excluded from the group of mean motion-scaling functions. 
Imputed values were determined for the missing values to eliminate the 
need for smoothing of the data correlation matrix for factor analysis, which 
would be required if the data were instead missing due to pairwise deletion. 
We used a nonparametric missing value imputation by random forest (48) 
for the hue-scaling data, given its deviation from multivariate normality. 
This imputation was performed with the “missForest” package in R using 
the missForest function. Since the motion-scaling data met assumptions of 
multivariate normality, we instead used multivariate imputation by chained 
equations (49). This imputation was performed with the “mice” package in R 
using the mice function with the predictive mean-matching method. All other 
analyses were performed on the hue- and motion- scaling datasets following 
these preprocessing steps.

Arcsine Transform. For analyses where indicated, this transform was applied to 
equate the variances for different mean percentages. The specific form used was:
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Rarc =
(2(sin−1(

√

R))

�

,

R corresponds with the percentage the observer provided in the hue-scaling 
task, and Rarc the arcsine-transformed percentage. The limits of the scale values 
transformed in this way are still 0 and 100. This transform is commonly used on 
hue-scaling data (46) and is preferred to logit given that values close to 0% and 
100% are common in hue-scaling responses.

Test–Retest and Split-Half Reliabilities. Observers’ scaling functions in each ses-
sion were first detrended by subtracting the mean scaling function across all observ-
ers for that session. To assess test–retest reliability, the detrended responses across 
sessions were correlated by taking the average scaling function for each observer 
for sessions 1 and 2, concatenating all observer scaling functions for session 1 and 
also for session 2, and calculating a correlation between sessions. To assess split-half 
reliability, detrended responses were concatenated for the first trials of each session 
and for the second trials of each session. A correlation between first and second trials 
within each session was then calculated to determine split-half reliability.

Factor Analysis. The same statistical analyses were performed on both hue-scal-
ing and motion-scaling data sets. Each set consisted of a mean hue-scaling func-
tion (averaging across trials) for the 46 and 48 included observers for the hue 
and motion sets, respectively. Factor analyses were computed on the response 
correlation matrices in each case (Fig.  2C). For the principal component (PC) 
method of estimation, the factor analysis was computed using the principal 
function within the R CRAN Package “psych.” The appropriate number of factors 
and rotation method were specified for the function to calculate the correspond-
ing factor model. For each dataset, we confirmed the existence of a correlation 
structure, and therefore that factor analysis was appropriate (Bartlett’s test of 
sphericity; color: χ2(630) = 1,246.00, P < 0.001; motion: χ2(630) = 1336.97, 
P < 0.001). We then decided on the method of estimation, rotation, and number 
of factors for each solution using the following criteria. To choose the appropriate 
method of estimation, we tested whether each dataset met assumptions of mul-
tivariate normality. Because the hue-scaling dataset deviated from multivariate 
normality (i.e., the statistical distances were not chi-square distributed according to 
a one-sample Kolmogorov–Smirnov test (D = 0.21, P = 0.03)), we extracted the 
factors using a principal component method as it is robust to normality devia-
tions unlike other common estimation methods (e.g., maximum likelihood) (28). 
However, a maximum likelihood method yielded similar results (SI Appendix, 
Fig. S1). Though the motion-scaling dataset met assumptions of multivariate 
normality (i.e., the statistical distances were chi-square distributed according to 
a one-sample Kolmogorov–Smirnov test (D = 0.17, P = 0.11)), we also extracted 
the factors using the principal component method for consistency with the factor 
model reported for color. A maximum likelihood method again yielded similar 
results (SI Appendix, Fig. S4). After extraction, we applied a Varimax rotation to 
the estimated factors for each dataset (an orthogonal rotation that favors a sparse 
factor structure) because an oblique solution (allowing for the factors to be corre-
lated), yielded similar results. Specifically, the Spearman’s rank-order correlation 
between the oblique (Promax) and orthogonal (Varimax) factor patterns was sig-
nificant for both the hue-scaling (ρ(358) = 0.49, P < 0.001) and motion-scaling 
(ρ(322) = 0.94, P < 0.001) datasets.

Systematic Loadings. Finally, we chose the number of factors using a “systematic 
loadings” criterion, which distinguishes significant factors from “noise”, as those with 
high loadings (i.e., the amount of variance in the variable that is accounted for by 
the factor) on multiple, consecutive stimulus angles. This criterion has been useful 
for identifying meaningful factors within stimulus spaces that lie on a continuum, 
particularly for color (50). For the hue-scaling data, factors with at least two consecu-
tive loadings higher than 0.63 were determined as systematic using a bootstrapping 
procedure, as they were unlikely to have emerged by chance (P = 0.014). For the 
motion-scaling data, factors with at least two consecutive loadings higher than 0.68 
were determined as systematic for these data using a bootstrapping procedure, as 
they were unlikely to have emerged by chance (P = 0.0003).

Systematic factors were determined using a custom-built algorithm that searches 
for a solution where all factors included are systematic (i.e., with multiple high, con-
secutive loadings). Bootstrapping procedures were used to determine the threshold 
that constituted a “high” loading (loading threshold) and the threshold number of 

“consecutive” loadings (run threshold) that were required for a factor to be considered 
systematic, given the parameters of the dataset (e.g., number of observers, number 
of variables, type of model). The bootstrapping analysis to determine the loading and 
run thresholds is accomplished by factor-analyzing correlation matrices of random 
datasets (of the same dimensions as the original) with the same method of estima-
tion (e.g., principal components) and rotation (e.g., Varimax) that was applied to 
the original data. From this, it is possible to determine whether a factor with a given 
loading and run threshold could have emerged by chance rather than corresponding 
to a meaningful, latent source of variability (i.e., systematic). The final factor analysis 
solutions required that all included factors were systematic according to these criteria, 
and the solution with the highest number of factors where all were systematic was 
chosen for each dataset. For each dataset, the algorithm starts by extracting as many 
factors as there are variables, and iteratively decreases the number of extracted factors 
until all factors in the solution are systematic. For each number of factors, the algo-
rithm begins by searching for a solution with the consecutive loading threshold set 
at two, and iteratively increases the consecutive loading threshold up to a limit, again 
while searching for a solution where all factors are systematic. For each solution, the 
algorithm finds the highest consecutive loadings for each factor, and the bootstrap-
ping analysis determines the frequency that a solution emerges by chance with the 
given loading threshold (set as the minimum loading of the maximum consecutive 
loadings across all extracted factors) and number of consecutive loadings. It then 
searches for a solution where the frequency is lower than 5% (i.e., P < 0.05) by adding 
to the consecutive loading threshold up to a limit and decreasing extracted factors 
until this criterion is met. Therefore, the loading and run thresholds to classify factors 
as systematic were slightly different for each solution. The bootstrapping analysis to 
determine the threshold values was performed with custom code written in R (https://
github.com/kjemery/factor_analysis).

Factor Scores. We estimated the factor scores by Thurstone’s (29) least-squares 
regression approach, which maximally ensures that the factor scores are correlated 
to the estimated factor (29, 51). Factor scores were calculated with the “psych” 
package by using the factor.scores function and the “Thurstone” method.

Code Availability. All analyses were conducted using both available and custom 
code written in MATLAB and R, which can be found here: https://github.com/
kjemery/factor_analysis.

Data, Materials, and Software Availability. The data (52) that support the find-
ings in this study can be found here: https://github.com/kjemery/factor_analysis.
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