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Individual differences are a conspicuous feature of color vision

and arise from many sources, in both the observer and the

world. These differences have important practical implications

for comparing and correcting perception and performance, and

important theoretical implications for understanding the design

principles underlying color coding. Color percepts within and

between individuals often vary less than the variations in

spectral sensitivity might predict. This stability is achieved by a

variety of processes that compensate perception for the

sensitivity limits of the eye and brain. Yet judgments of color

between individuals can also vary widely, and in ways that are

not readily explained by differences in sensitivity or the

environment. These differences are uncorrelated across

different color categories, and could reflect how these

categories are learned or represented.
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Introduction
Sensory processing varies widely from one individual to the

next. These variations are not restricted to clinical deficits

or anomalies, and more broadly represent a natural and

inherent property of all sensory systems that affect all

aspects of coding, from sensitivity to conscious experience.

As a result, thenotion ofa ‘standardobserver’ (awidelyused

metric in colorimetry [1]) belies the fact that individual

differences are the standard, and that an average function

characterizes the behavior of few if any actual observers.

Studies of individual differences are thus important for

describing the distribution of percepts and abilities on

different sensory tasks. However, they are also increasingly

recognized as an important source of information about the

underlying causes for these differences [2�,3,4��].
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Systematic variation arises from systematic differences

in the mechanisms and computations mediating percep-

tion, and thus the specific patterns of variation provide

clues about the nature and function of these latent

processes. Here we briefly review insights from individ-

ual differences about how and to what extent the brain

forms a consistent representation of color. We highlight

two striking features of this representation. First, despite

enormous variations both within and across observers,

the visual system often maintains a highly stable per-

ceptual experience of color. Second, despite this stability

or constancy, some aspects of color experience never-

theless vary markedly across observers. These patterns

point in surprising ways to the nature of the perceptual

architecture of color appearance.

Sources of variation in color vision
Systematic variability in color vision arises at all levels

of the visual system, beginning even before light

reaches the receptors. The lens and macular pigments

selectively absorb short-wavelength light, and varia-

tions in their density strongly bias spectral sensitivity

[5�,6]. The spectral sensitivities of the cone receptors

can also vary because of common polymorphisms in the

genes encoding the cone opsins, leading to small but

reliable differences in the wavelength of peak sensitiv-

ity [7]. Differences in the concentration or optical

density of the photopigment also varies the bandwidth

of the cone sensitivities [8]. More pronounced genetic

alterations of the long-wavelength or medium-wave-

length photopigments (L or M) underlie common forms

of color deficiencies, affecting �8% of Caucasian males

[9]. These can range from alterations of the sensitivities

(anomalous trichromacy) to a complete loss of one cone

class (dichromacy). Because these genes are coded on

the X chromosome, they may potentially also lead to an

extra dimension of color vision (tetrachromacy) in some

female carriers of color deficiencies [10,11], though the

link between the number of photopigments and the

dimensionality of color vision is not simple [12].

Together these peripheral factors strongly influence

color matches, or which physical spectra lead to equal

quantum catches in the cones and are thus indistinguish-

able or metameric to the observer [5�,6]. Consequently,

stimuli that look identical to one observer will appear

different to another, so that we each live in unique

perceptual worlds. Metamer differences across observers

may become more pronounced with the introduction of

narrow-band light sources in wide gamut lighting and
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displays [13], prompting interest in developing color

profiles for individual observers to try to partially adjust

images for these differences. In color research, analogous

corrections are routinely applied to adjust for the lumi-

nance sensitivity of the individual [14,15]. This sensi-

tivity depends primarily on the combined responses of

the L and M cones, though in complex ways [16]. The L:

M cone ratio can be measured in vivo with adaptive

optics [17,18] and shows a dramatic range of normal

variation, from 1:1 to 16:1 [19].

We know much less about the sources and nature of normal

variation in post-receptoral color mechanisms. However, it

seems likely that neural variability is pronounced at all

processing stages, and for example, post-receptoral limits

on chromatic sensitivity also vary widely among individuals

(e.g. Refs. [20,21]). As a result, we each view the world

througha unique visual apparatus.Moreover, it is important

to emphasize that this physiological variation can be

equally dramatic within the individual, across both time

and space. The visual system undergoes enormous changes

during normal development or aging or with the progres-

sion of disease [20,22,23]. Similarly, visual processing varies

both quantitatively and qualitatively from the center of

gaze to the periphery [24]. Thus even an individual

observer ‘sees’ the world through a visual system that is

very different at different times and locations.

Stability despite variation
If vision did not adjust for these sensitivity variations, we

would each experience color very differently — uniform

surfaces would appear with steep color gradients, and the

world would seem yellower and lower contrast as we age.

Yet sensory systems exhibit a remarkable capacity to com-

pensate for their sensitivity limits in order to maintain a

constant or stable representation of physical properties of

the world. An example is filling-in of information in the

blind spot or scotomas [25]. Similarly, color perception rests

on a range of adjustments that correct for the idiosyncratic

spectral sensitivity of the observer. Thus the stimulus that

appears white or as a particular hue shows little variation

with age [26–28], and color percepts across the visual field

change much less than predicted by the spatial variations in

spectral sensitivity [29]. These constancies are sometimes

complete, but not always [30], and how they succeed or fail

can provide insights into the limits and mechanisms of

neural compensation, and perhaps into fundamental strat-

egies in perceptual processing.

While many of these strategies remain unknown, it is

apparent that compensation for variations in the indi-

vidual involves multiple processes and levels, similar to

the many adjustments and heuristics that support color

constancy with variations in the stimulus (e.g. allowing

stable color of surfaces despite changes in the lighting)

[31,32]. One simple mechanism is adaptation to the

average stimulus spectrum, which can reciprocally
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reweight sensitivity to discount a sensitivity bias. If

these adjustments are local they could operate across

the visual field to maintain a constant white balance in

the response [33]. However, the visual system does more

than adjust to the mean. Hue percepts remain more

consistent between the fovea and near periphery than

predicted by simply rescaling the cone sensitivities

[34,35], and they may also compensate for the sensitivity

biases that are introduced by changing the spectral

bandwidth and thus saturation of the stimulus [36].

Adaptation could also adjust the contrast gain of the

system, in order to maintain a constant perceptual gamut

[37]. Another class of adjustments may involve learning.

For example, prominent color percepts could reflect the

stimulus properties of the world rather than the physio-

logical processing of the observer. For example, pure

blue and yellow lie close to the axis of natural daylight

variation and thus have a clear environmental analog

[38], while a neural substrate for these special hues has

proven elusive [39]. Learning has also been invoked to

explain how color percepts could remain invariant across

different retinal locations [40].

These types of adjustments could also support ‘inter-

observer’ constancy. As long as the stimulus character-

istics of the visual environment are more consistent than

the physiological characteristics of the observers, then

adaptation to – or learning about – a common world

should tend to converge observers toward common color

experiences. For example, inter-observer variation in

achromatic settings is much less than expected from

the wide natural range of human spectral sensitivity

[33,41]. Another potential illustration is the color expe-

rience of anomalous trichromats. Their altered cone

sensitivities predict very weakened L versus M cone

responses (roughly reddish-greenish sensations). Yet

their perceptual reports of color suggest that in some

of these observers the L versus M signal is amplified so

that they may experience visible colors more like normal

trichromats, even if their thresholds for detecting color

differences are much higher [42]. This amplification is

consistent with an adaptation that – like normal trichro-

mats – matches the gain of their neural coding to the

same range of color contrasts in their environment [43].

A further line of inquiry pointing to stable inter-observer

color experience derives from cross-cultural studies of

color naming. Berlin and Kay’s World Color Survey

revealed consistent patterns of linguistic color categories

across different populations [44]. For example, most

languages have a basic color term for ‘red’ that labels

a similar region of color space. The link between naming

and appearance is complex, and despite strong universal

trends there are also clear examples of linguistic relativ-

ity in color categories and perceptual performance. As

such the interpretation of these naming patterns con-

tinues to evolve [45�,46,47�,48�]. However, the
Current Opinion in Behavioral Sciences 2019, 30:28–33
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similarities in color categorization suggest that some-

thing – in the world or the brain – is again consistent

enough to maintain shared properties across observers in

at least some aspects of color perception and

communication.

Variation despite stability
While the foregoing emphasizes the potential similari-

ties in color percepts both within and between observers,

in other regards measures of color appearance are strik-

ing for the dissimilarities they suggest, a point dramati-

cally illustrated by the image of the blue–black or white–

gold dress [49–51]. Differences in color appearance

could again arise from many factors. For example, the

same mechanisms that calibrate different visual systems

for the same environment should drive individuals

toward divergent percepts when it is the environment

that varies [52]. The color statistics of the environment

can vary widely (e.g. between lush or arid habitats, or

natural or carpentered). Thus any given environment

may hold its inhabitants in very different states of

adaptation [53]. Notably the range of variation this

predicts (though not the specific pattern) is comparable

to the range observed in average color naming across

different cultures [54]. Even in the same environment,

color perception could cycle with the seasons [55],

tracking the annual variations in the color characteristics

of the world [56].

Differences in color naming are also surprisingly large. In

a reanalysis of the World Color Survey, Lindsey and

Brown showed that there is often more similarity in the

color naming of respondents from two different lan-

guages than among speakers of the same language

[57]. These patterns suggest that different individuals

tend to adopt different strategies or motifs that are

themselves universal in that they are deployed across

languages. Similarly, within the English language many

studies have now documented the reported color per-

cepts of individuals by measuring the unique hues (pure

sensations of red, green, blue or yellow). The focal

stimuli corresponding to these hues vary widely and

consistently across observers [58]. In some cases, these

variations are predictable from individual differences in

spectral sensitivity (e.g. the wavelength that appears

unique green has been found to be correlated with both

macular pigment density and L:M cone ratio) [59,60].

Such results are important because they would implicate

a relatively fixed neural readout for the unique hues, as

assumed by conventional color-opponent theory. How-

ever, more often it has been difficult to show an associa-

tion between unique hues and sensitivity. For example,

unique yellow settings appear unaffected by very differ-

ent L:M cone ratios [61], and more generally, the range

of variation in each of the hues is inconsistent with the

distribution expected from normal variations in spectral

sensitivity [62].
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A further surprising and important characteristic of hue

percepts is that the individual variations across differ-

ent hues are largely independent [62]. That is, how

observers differ in unique red is uncorrelated with the

differences in unique yellow. Even more surprising,

these differences are also uncorrelated with the inter-

mediate binary hues (e.g. orange or purple) [63]. Thus

knowing an individual’s red and yellow settings does

not predict their orange setting, even though according

to color-opponent theory, orange is encoded only

implicitly by the underlying mechanisms representing

red–green and blue–yellow sensations. This indepen-

dence is also not predicted from most peripheral

sources of sensitivity variation, which should instead

lead to more broadband and thus correlated changes in

the different hues [62].

Analyses of such correlations provide a powerful and

widely used tool in the study of individual differences.

Measurements that covary (or are independent) are

likely to reflect the influence of common (or indepen-

dent) underlying processes. Statistical approaches such

as factor analysis or principal components analysis are

designed to extract these processes, and in vision, factor

analysis has been applied to a variety of data sets to try to

estimate the number and characteristics of the mecha-

nisms mediating different visual tasks [64�]. Importantly,

many visual judgments are precise enough (yet vary

enough across observers) to provide precise quantitative

information about these mechanisms and how they differ

among the subjects [6].

Recently Emery et al. applied factor analysis to mea-

surements of hue-scaling data, in which different colors

are described in terms of their perceived proportion of

red versus green or blue versus yellow [65�,66]. Even

though observers were explicitly instructed to decom-

pose their color percepts in terms of these four pri-

maries, the resulting factor pattern instead revealed

roughly seven distinct factors, each narrowly tuned to

a different region of color space (Figure 1). While the

basis for this finding remains uncertain, one possible

interpretation is that observers learn to partition or

otherwise encode the color plane into many color cate-

gories (e.g. the four unique hues and their binary

combinations), and that the stimuli encompassing each

category are learned or encoded independently. That

is, each individual may separately represent the stimuli

they classify as yellow or orange or red. A further

implication is that while the stimulus for color can be

described in a two-dimensional metrical space, the

perceptual representation of color may be non-metrical,

with different colors coded as qualitatively different

categories rather than quantitatively different vectors [

65�]. Whatever their cause, hue percepts appear

remarkably constant within the observer, yet surpris-

ingly different across observers.
www.sciencedirect.com



Individual differences in color vision Emery and Webster 31

Figure 1

(a) (b)

(c) (d)
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Individual differences in hue scaling (after [61]). (a) 26 observers rated the perceived proportion of red, green, blue, or yellow in 36 stimuli spanning

the cone-opponent plane. (b) Hue scaling functions derived by converting the RGBY percents into a perceptual angle in a blue–yellow versus red–

green plane, as a function of stimulus angle in the cone-opponent plane. Color lines are for individual observers; black line plots the mean for all

observers. (c) Standard deviations across trials within an observer (dashed lines), or for the mean settings between observers (solid line).

Between-subject differences are consistently larger suggesting they reflect real inter-observer differences in hue scaling rather than measurement

noise. (d) Factor analysis of the individual differences in the hue scaling functions identified seven systematic factors, each accounting for the

variance over a different narrow range of hues.
Conclusion
The representation of color remains highly stable within

the individual despite many factors that bias spectral

sensitivity. Some aspects of color percepts may also

remain relatively stable across observers, because of

physiological or environmental constraints. Yet in other

ways color appearance manifests as a private experience,

so that, for example, the stimuli for unique hues are

unique to the individual. The neural or environmental
www.sciencedirect.com 
bases for these variations have yet to be revealed, but may

point to fundamental principles in the visual construction

of color.
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